A SMARTer Approach to Profiling the Human T-Cell

Abstract Receptor Repertoire

Profiling T-cell receptor (TCR) repertoires involves characterizing the diversity of TCR nucleotide sequences Sarah Taylor, Nao Yasuyama and Andrew Farmer’ 'Corresponding Author: Andrew_Farmer@clontech.com

in a sample, and is an increasingly popular approach for analyzing the composition of the adaptive immune _ _ _
system. While low-throughput approaches have yielded important insights concerning TCR repertoire Clontech Laboratories, Inc., 1290 Terra Bella Ave., Mountain View, CA 94043

dynamics, development of next-generation sequencing (NGS) technologies has dramatically expanded
research prospects.

Using SMART® (Switching Mechanism at 5" End of RNA Template) technology, we have developed an NGS
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J C W TCRa M TCRb Off target 3-TRBJ1-2 clonotype). Panel A. Correlation between concentration of spiked-in Jurkat RNA and number of TRBV12-3-TRBJ1-2-
specific sequence reads. Numbers along the X-axis indicate serial-diluted concentrations of spiked-in Jurkat RNA (by mass):

1=10%; 2 =1%; 3 = 0.1%; 4 = 0.01%; 5 = 0.001%. Count data for TRBV12-3-TRBJ1-2-specific sequence reads were normalized
by subtracting the number of corresponding reads obtained for negative control samples consisting of unspiked PBMC RNA.
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