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Abstract
Next Generation Sequencing (NGS) has empowered a deeper understanding of biology by enabling 
RNA expression analysis over the entire transcriptome with high sensitivity and dynamic range. 
A powerful application within this field is stranded RNA-seq, which is necessary to distinguish 
closely-related genes and non-coding RNAs (e.g. lincRNA) or to define genes in poorly annotated, 
coding-rich genomes, including many bacteria. 

Commonly-used methods to generate strand-specific RNA-seq libraries are plagued by protocols 
that require several rounds of enzymatic treatments and cleanup steps, making them time intensive 
and insensitive, and making it challenging to process several samples simultaneously. Here we present 
a novel, single-tube method, based on Clontech’s patented SMART™ technology, which is able to 
generate strand-specific RNA-seq libraries from minute samples in under four hours. This approach 
eliminates the multitude of labor-intensive enzymatic steps required by other stranded RNA-seq 
methods, while maintaining the sensitivity and reproducibility characteristic of SMART. We have 
successfully tested our technology with input levels from 100 pg to 100 ng of poly(A)-selected RNA, 
as well as with ribosomally-depleted RNA from FFPE samples, with outstanding reproducibility 
within and across input levels. Spike in of ERCC controls showed linear detection over six orders 
of magnitude and strand specificity of over 99%. 

The increased sensitivity achieved with SMART requires a very sensitive rRNA removal method (most 
methods require microgram amounts of total RNA). With this in mind, we have developed a method 
of rRNA depletion which effectively removes 28S, 18S, 5.8S, 5S, and 12S transcripts from mammalian 
samples down to 10 ng. The remaining, rRNA-depleted RNA can easily be used in downstream 
sequencing applications with fewer than 5% of reads mapping back to rRNA. 

With these tools, researchers can more confidently apply NGS to challenging samples.

Introduction
NGS’ short reads can make it difficult to determine which gene or noncoding sequence a particular 
read comes from. In the SMARTer® Stranded RNA-Seq Kit, we use a directional template-switching 
reaction to preserve the strand orientation of the RNA and obtain strand-specific sequencing data 
from the synthesized cDNA. The SMARTer Stranded RNA-Seq Kit generates indexed cDNA libraries 
that are suitable for RNA-seq on any Illumina® platform. The protocol has been designed for ease 
of use and direct addition of adapters, and can be completed in less than 4 hr. Importantly, the SMARTer 
Stranded RNA-Seq Kit produces whole-transcriptome coverage without 5' or 3' biases, and yields 
excellent reproducibility and sensitivity, mappability, and ERCC and MAQC correlation.

Conclusions
The SMARTer Stranded RNA-Seq Kit provides a simple and efficient solution for generating 
indexed cDNA libraries suitable for NGS on any Illumina platform in less than 4 hr, starting from 
as little as 100 pg of poly(A)-purified or rRNA-depleted RNA. 

• Robust performance and wide dynamic range: Single-tube protocol creates sequencing-ready 
libraries from low-input samples of poly(A)-purified or rRNA-depleted RNA (Figure 1). Data 
is highly reproducible across a wide range, extending to as little as 100 pg of input RNA (Figure 2).

• Highly accurate and reproducible results: All 92 ERCC spike-in control transcripts were detected 
with expression levels consistent with the quantity spiked in. Results were highly reproducible 
across replicates and over a thousand fold range of input RNA levels (Figures 2 and 3).

• Ability to distinguish overlapping and antisense transcripts: Sequencing reads are assigned 
to the correct gene in the case of overlapping and antisense transcripts (Figure 4).

• rRNA depletion from small samples: RiboGone™ - Mammalian treatment removes rRNA 
from intact and degraded total RNA, and retains noncoding transcripts for analysis (Figure 5).

• Highly correlated with other methods of measuring expression: Differential expression data 
obtained with the SMARTer Stranded RNA-Seq Kit is highly correlated with MAQC qPCR 
data (R=0.860; Figure 6).
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The SMARTer Stranded RNA-Seq Kit produces high-yield, high-quality cDNA irrespective of input RNA concentrations. 
Panel A. Flowchart of SMARTer Stranded RNA-Seq library generation. The SMARTer Stranded RNA-Seq Kit utilizes 
the proprietary SMART Stranded N6 Primer and SMARTScribe™ Reverse Transcriptase to perform first strand 
synthesis and tailing. When SMARTScribe RT reaches the 5' end of the RNA fragment, its terminal transferase activity 
adds a few additional nucleotides to the 3' end of the cDNA. The SMARTer Stranded Oligo base-pairs with this non-
templated nucleotide stretch, creating an extended template to enable SMARTScribe RT to continue replicating 
to the end of the oligonucleotide (3). Panel B. cDNA libraries produced with the SMARTer Stranded RNA-Seq Kit. 
Human Brain Poly A+ RNA (Clontech) was spiked with ERCC control RNA and serially diluted to prepare RNA samples 
containing between 100 ng–100 pg Human Brain Poly A+ RNA. cDNA libraries were successfully prepared in triplicate 
according to the SMARTer Stranded protocol with SeqAmp™ DNA Polymerase and twelve different Illumina indices, 
and visualized as an Agilent 2100 Bioanalyzer gel-like image using a High Sensitivity DNA Chip. Libraries had comparable 
yields and purity irrespective of input RNA concentrations. Libraries were sequenced on an Illumina HiSeq® 2000 
instrument, with ~300M 2 x 100 bp paired end reads.

High reproducibility confirmed by ERCC analysis. FPKMs were plotted against the relative concentrations of the ERCC 
spike-in control RNAs. Panel A. Reads mapping to the ERCC data set from one 100 ng input library. Panel B. Reads 
mapping to the ERCC data set from one 100 pg library. Panel C. Reads mapping to the ERCC data set from all librar-
ies combined. Similar results are obtained from individual libraries, regardless of input amount (Panels A and B), 
and the complete set of 92 ERCC transcripts was detected linearly over the entire range of concentrations in the 
pooled mapping (Panel C). Axes are plotted on a log2 scale. Slope, Pearson coefficient of correlation (R), and number 
of transcripts detected are indicated above each graph.

RiboGone treatment removes rRNA efficiently from intact and degraded RNA, while retaining noncoding transcripts 
for analysis. RNA-Seq libraries were generated from Human Brain Total RNA (Clontech) or Breast Cancer FFPE RNA 
(Cureline, extracted using a NucleoSpin totalRNA FFPE kit) and treated with the indicated rRNA removal method. 
Reads were mapped to the hg19 genome and read distributions were determined using Picard RNA-Seq Metrics. 
Libraries generated from RiboGone-treated RNA had comparably low rRNA reads to oligo(dT) enriched RNA (Takara), 
while retaining more noncoding reads.

Obtain highly reproducible and sensitive directional RNA-seq data across a wide range of input RNA with the SMARTer 
Stranded RNA-Seq Kit. Scatter plots of expression (FPKM) comparing pairs of cDNA library replicas created from 100 ng 
or 100 pg of input RNA (Panels A and B respectively) show high reproducibility across a wide range of input levels. 
Panel C. cDNA libraries prepared from 100 ng and 100 pg of human brain polyA+ RNA show a high correlation, 
suggesting consistency across input levels. Axes are plotted on a log10 scale. Insets indicate the Pearson coefficient 
of correlation between replicates (R).

Distinguishing overlapping and antisense transcripts with the SMARTer Stranded RNA-Seq Kit. Panel A. RNA-seq 
reads from the Human Brain Poly A+ RNA cDNA library were mapped against the human genome. The SMARTer 
stranded method allowed assignment of sequencing reads to the correct gene in the case of overlapping PHC1 
and M6PR transcripts. Panel B. Strand-specific coverage of the CDR1 locus. Nearly all reads are antisense to the anno-
tated transcript, a finding independently reported elsewhere (4). Panel C. Comparison of CDR1 gene counts obtained 
using either a strand-agnostic or strand-aware method.

High correlation between SMARTer RNA-seq data and qPCR data from the MAQC project. Differential expres-
sion data was obtained for Human Brain Reference RNA (Ambion) and Human Universal Reference RNA (Agilent) 
using the SMARTer Stranded kit (after RiboGone rRNA depletion) and compared with qPCR data for the same RNAs 
obtained through the MAQC study (2). A scatter plot was used to compare the differential expression data. The slope 
(0.875) and correlation (0.860) for the comparison line of expression ratio (in RPKM) and qPCR ratio (in Ct) are plot-
ted for Human Brain and Human Universal Reference RNAs, on a log2 scale. The transcripts used in this analysis 
were the 623 of ~900 transcripts present in the MAQC data set that were also detected in both the Human Brain 
and Human Universal RNA-seq data sets.
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