

Clontech TakaRa cellortis

Single-cell application development with the ICELL8® cx system: One platform, endless possibilities

Magnolia Bostick, PhD, Takara Bio USA, Inc.

March 1, 2020

that's GOOD science![®]

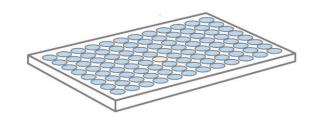
For Research Use Only. Not for use in diagnostic procedures.

© 2020 Takara Bio Inc. All rights reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Additional product, intellectual property, and restricted use information is available at takarabio.com

Single cells: a brief historical perspective for Takara Bio

2012

Ramsköld, D. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. *Nat. Biotechnol.*


- SMARTer[®] Ultra[®] Low RNA Kit for Illumina[®] Sequencing
- 12 cells
- 3 cultured cell types
- Basic clustering

2018

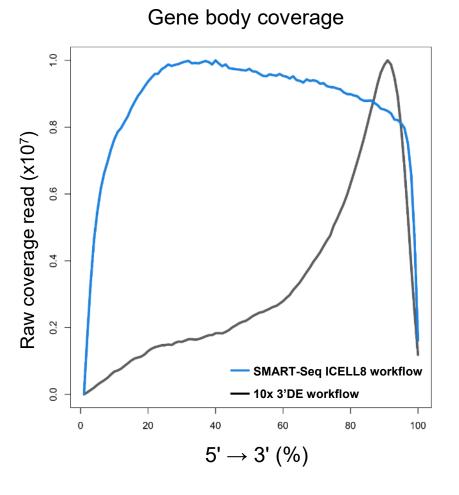
Schaum, N. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature

- 10x and Smart-seq2 methods
- 100,000 cells
- De novo cell-type identification by tSNE

Takara Bio solutions for single-cell research

SMART-Seq[®] Single Cell Kit

- Chemistry optimized for increased performance on single cells with very, very low RNA content
 - QC performed with 2 pg of Mouse Brain RNA
- Best kit for single-cell or nuclei applications
- Robust full-length chemistry
- Highest sensitivity and reproducibility
- Easily adaptable to automation protocols

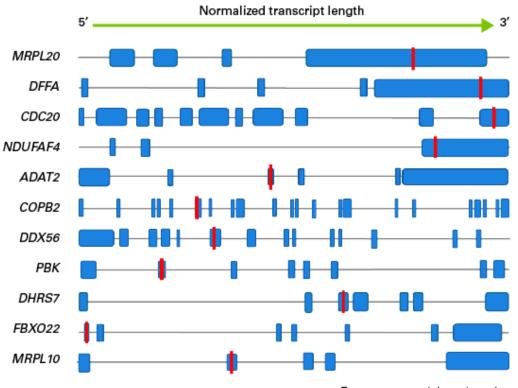


ICELL8 cx Single-Cell System

- Open platform with integrated nanodispensing + imaging systems
- Visual identification and unique processing of individual cells
 - Up to \sim 1,500 cells
 - Three colors (blue, green, red)
- Flexible to function with Takara Bio or user-developed chemistries, including:
 - ATAC-seq, CUT&Tag, and SMART-Seq full-length mRNA sequencing
- Bioinformatic support available for mapping and further classification of your cells of interest

SMART-SEQ ICELL8

What does it mean to be full length?

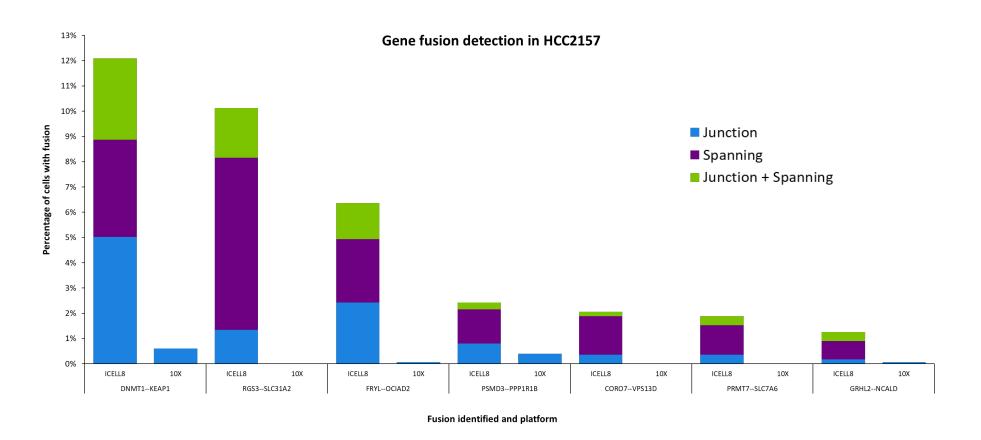


- Full-length protocol has paired-end reads both reads contain information about the gene (barcodes are identified through index reads)
- This leads to >2X coverage of the genes identified than a single-end technology with the same number of clusters

Data from HEK 293 cells (10x v2)

Improved SNP detection with full-length information

		SMART-Seq ICELL8 workflow		10x 3'DE workflow		
Gene	Wt / variant	Total reads	Variant reads	Total reads	Variant reads	Location
MRPL20	G/C	662	163	127	27	Exon 4 (total 4)
DFFA	C/T	136	45	71	21	Exon 5 (total 5)
CDC20	G/A	161	84	144	86	Exon 11 (total 11)
NDUFAF4	A/C	225	74	98	42	Exon 3 (total 3)
ADAT2	A/C	107	25	17	5	Exon 3 (total 6)
COPB2	C/A	209	144	ND	ND	Exon 6 (total 22)
DDX56	G/A	108	32	ND	ND	Exon 6 (total 14)
PBK	C/G	160	55	ND	ND	Exon 2 (total 8)
DHRS7	T/C	175	173	ND	ND	Exon 3 (total 7)
FBXO22	C/T	169	55	ND	ND	Exon 1 (total 7)
MRLP10	G/T	231	137	ND	ND	Exon 2 (total 5)



Exon maps are not drawn to scale.

- More SNPs across the whole transcript were detected in samples prepared with SMART-Seq chemistry on the ICELL8 cx system
- 10x 3' DE (v3) chemistry was not able to detect (ND) SNPs at the 5' end of genes

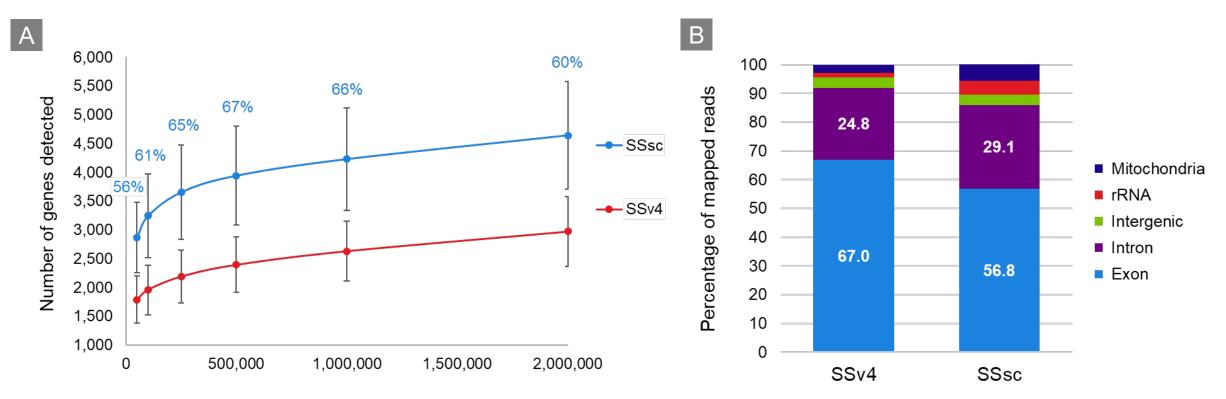
Data from K562 cells

Fusion identification in a breast cancer cell line

- Fusions were identified in 70% of SMART-Seq cells, but only 30% of 10x cells
- SMART-Seq chemistry allows for spanning read identification—supporting data

Data from HCC2157 cultured cells

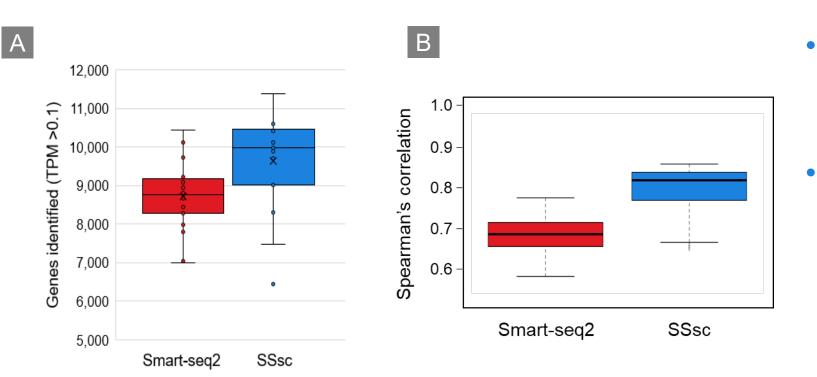
ICELL8 = SMART-seq ICELL8 workflow


10X = 10x 3'DE workflow

SMART-SEQ SINGLE CELL KIT (SSsc)

Studies to illustrate performance of the new SSsc kit

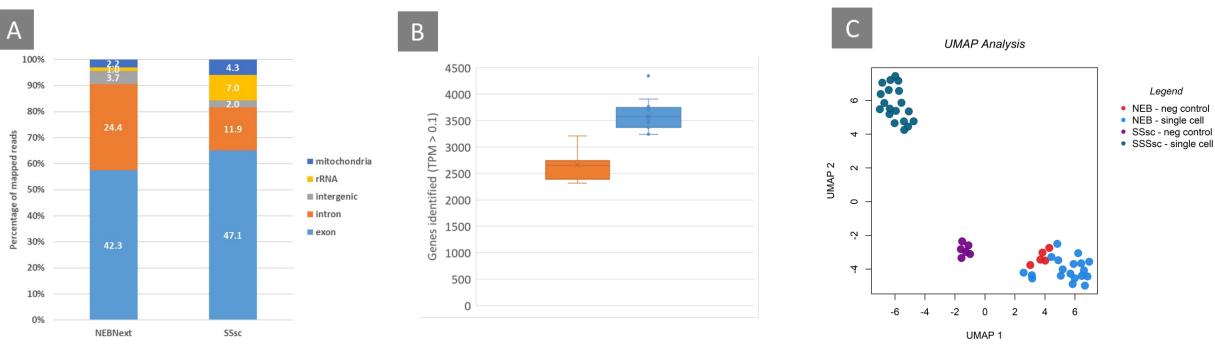
- Comparisons with SMART-Seq v4 kit (SSv4)
 PBMCs
- Comparison with Smart-seq2 (SS2)
 - Cultured lymphoblast cells
- Comparison with NEBNext Single Cell kit
 Brimany T colls
 - Primary T cells
- Customer data comparison
 - Primary B and T cells


Higher performance with primary samples

- Consistently, ~60% more genes are detected in the cells processed with SSsc, regardless of the sequencing depth used for the analysis
- Similar read distribution between the two chemistries

Data from PBMCs

SSsc outperforms SS2

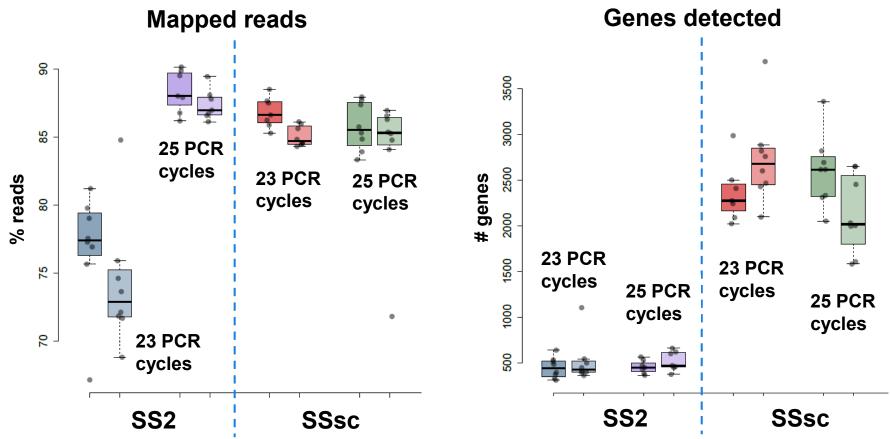

 ~20% more genes identified with SSsc in this study

SSsc shows higher Spearman's correlation (0.85), indicating higher reproducibility

Data from lymphoblastoid cells (GM12878)

Clontech TakaRa cellartis

SSsc is more sensitive than NEBNext Single Cell kit


- Greater number of reads mapping to introns with NEBNext Single Cell kit
- More genes (~40%) are detected in the cells processed with SSsc
- Increased cycling was required for the NEBNext Single Cell kit—therefore the negative control
 performs similarly to the single cells

Data from primary T cells

Datasets from customer using SSsc

- Single Cell Genomics Team Leader at CNAG in Barcelona (Dr. Holger Heyn)
 - Single Cell Genomics Team focuses on the implementation of single-cell sequencing technologies and their application in research and translational contexts
 - Currently a high-volume Smart-seq2 user
 - Did a comparison study using B and T cells with SS2 and SSsc; performed miniaturized reactions for each chemistry

CNAG: SSsc outperforms SS2 for single cells with low RNA content

- Liquid handler: Mantis
- Miniaturized workflows for both chemistries

- Similar number of reads per sample (~500,000)
- SSsc had consistently high performance for the percentage of mapped reads
- SSsc detected at least five times as many genes as SS2

Data from B and T cells

Conclusions

- The new SMART-Seq Single Cell Kit features a user-friendly, plate-based workflow that starts directly from single cells isolated by FACS or other methods
- Offers unparalleled sensitivity and reproducibility for single-cell, full-length RNAseq, particularly for cells with very low RNA content (e.g., immune cells)
- Outperforms the Smart-seq2 method in convenience, sensitivity, gene identification, and reproducibility—as seen in both internal and customergenerated data
- Compatible with automation platforms
- Offers the highest confidence for interlaboratory comparisons due to manufacturing with strict quality standards (ISO 13485:2016 certification)

Takara Bio activities at ABRF

- Automation
 - Poster 147, 11:30: Robust and sensitive detection of gene fusions using high-throughput SMART-Seq chemistry on the ICELL8 cx system
 - Poster 133, 11:30:Utilizing the Rheonix NGS OnePrep[™] Solution to automate the Takara Bio ThruPLEX® Tag-Seq HV library preparation kit
 - Poster 132, 12:30: Miniaturization of Ribosomal RNA Depletion and Total RNA Library Preparation in Single Cells
- Immune Profiling
 - Poster134, 12:30: Efficient high-throughput sequencing for quantitative immune profiling using unique molecular identifiers
- DNA-Seq
 - Poster 146, 12:30: ThruPLEX® HV: A Simplified System for Preparation of Molecular-Tagged NGS Libraries from FFPE and cell-free DNA
- RNA-Seq
 - Poster 131, 11:30: Pushing the limits of single-cell RNA-seq with SMART-Seq single cell technology
- Visit us at Booth #104

that's GOOD science!®

Clontech TakaRa cellortis