

Restriction Map and Multiple Cloning Site (MCS) of pBI-L Tet Vector. Unique restriction sites are shown in bold.

Description

The pBI-L Tet Vector is a response plasmid that can be used to express a gene of interest and luciferase from a bidirectional tet-responsive promoter ($P_{\rm bi-1}$; 1) in Clontech's Tet-On and Tet-Off Gene Expression Systems and Cell Lines (2). The Tet Expression Systems and Cell Lines give researchers ready access to the tetracycline-regulated expression systems described by Gossen & Bujard (3; Tet-Off) and Gossen *et al.* (4; Tet-On). The pBI-L Tet Vector contains the bidirectional promoter $P_{\rm bi-1}$ which is responsive to the tTA and rtTA regulatory proteins in the Tet-Off and Tet-On systems, respectively. $P_{\rm bi-1}$ contains the Tet-responsive element (TRE), which consists of seven copies of the 42-bp tet operator sequence (*tetO*). The TRE element is between two minimal CMV promoters ($P_{\rm minCMV}$), which lack the enhancer that is part of the complete CMV promoter. Consequently, $P_{\rm bi-1}$ is silent in the absence of binding of TetR or rTetR to the *tetO* sequences. $P_{\rm minCMV-1}$ controls the expression of the gene of interest; and $P_{\rm minCMV-2}$ controls the expression of luciferase. Therefore, the expression of a gene of interest for which there is no convenient assay may be monitored indirectly via the luciferase reporter function. Note that the cloned insert must have an initiation codon. In some cases, addition of a Kozak consensus ribosome binding site (5) may improve expression levels; however, many cDNAs have been efficiently expressed in Tet systems without the addition of a Kozak sequence.

Use

pBI-L allows the simultaneous regulation of both a gene of interest and luciferase by one central TRE. After a stable Tet-On or Tet-Off cell line has been established by transfecting with a tTA or rtTA regulator plasmid, pBI-L is cotransfected with pTK-Hyg (Cat. No. 631750) to permit selection of a double-stable cell line which expresses both the gene of interest and the luciferase reporter gene. Alternatively, pPUR (Cat. No. 631601) or another selection plasmid can be used. If this plasmid contains an enhancer element, as does pPUR, cointegration of pBI-L and the selection plasmid may lead to higher background expression. Double-stable, tet-responsive cell lines with the pBI-L response constructs can be developed using the protocols described for pTRE response plasmids in theTet Systems User Manual (PT3001-1). After the double-stable cell line is established, expression of luciferase can be monitored using any standard assay.

(PR123819; published February 2011)

United States/Canada 800.662.2566 Asia Pacific

+1.650.919.7300

+1.650.919.7300 **Europe**

+33.(0)1.3904.6880

Japan +81.(0)77.543.6116

Clontech Laboratories, Inc. ATakara Bio Company 1290Terra Bella Ave. Mountain View, CA 94043 Technical Support (US) E-mail: tech@clontech.com www.clontech.com pBI-L Tet **Vector Information**

Location of Features

• P_{bi-1} Bidirectional Tet-responsive promoter: 12–568

P_{minCMV-2}: 122–12

Tet-responsive element (TRE): 128-439

 $P_{\text{minCMV-1}}$: 440–568

• Multiple cloning site (MCS): 603-652

Fragment containing the β-Globin poly A signal: 659–1826

Col E1 origin of replication: 2027–2670

Ampicillin resistance gene

β-lactamase coding sequences: 3678–2818

Fragment containing the SV40 poly A signal: 4343–3892

• Luciferase gene: 6075-4423

Propagation in E. coli

• Suitable host strains: DH5 α and other general purpose strains.

Selectable marker: plasmid confers resistance to ampicillin (50 µg/ml) on E. coli hosts.

• E. coli replication origin: Col E1

References

Baron, U., et al. (1995) Nucleic Acids Res. 17:3605-3606.

Tet Expression Systems and Cell Lines (July 1996) Clontechniques XI(3):2-5.

Gossen, M. & Bujard, H. (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551.

Gossen, M., et al. (1995) Science 268:1766-1769.

Kozak, M. (1987) Nucleic Acids Res. 15:8125-8148.

Note: The attached sequence file has been compiled from information in the sequence databases, published literature, and other sources, together with partial sequences obtained by Clontech. This vector has not been completely sequenced.

Notice to Purchaser

Clontech products are to be used for research purposes only. They may not be used for any other purpose, including, but not limited to, use in drugs, in vitro diagnostic purposes, therapeutics, or in humans. Clontech products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without written approval of Clontech Laboratories, Inc.

Use of the Tetracycline controllable expression systems (the "Tet Technology") is covered by a series of patents including U.S. Patent Nos. 5,464,758 and 5,814,618, which are proprietary to TET Systems GmbH & Co. KG. Academic research institutions are granted an automatic license with the purchase of this product to use the Tet Technology only for internal, academic research purposes, which license specifically excludes the right to sell, or otherwise transfer, the Tet Technology or its component parts to third parties. Notwithstanding the above, academic and not-for profit research institutions whose research using the TetTechnology is sponsored by for profit organizations, which shall receive ownership to all data and results stemming from the sponsored research, shall need a commercial license agreement from TET Systems in order to use the Tet Technology. In accepting this license, all users acknowledge that the Tet Technology is experimental in nature. TET Systems GmbH & Co. KG makes no warranties, express or implied or of any kind, and hereby disclaims any warranties, representations, or guarantees of any kind as to the Tet Technology, patents, or products. All others are invited to request a license from TET Systems GmbH & Co. KG prior to purchasing these reagents or using them for any purpose. Clontech is required by its licensing agreement to submit a report of all purchasers of the Tet-controllable expression system to TET Systems. For license information, please contact: GSF/CEO,TET Systems GmbH & Co. KG, Im Neuenheimer Feld 582,69120 Heidelberg, Germany Tel: +4962215880400 , Fax: +4962215880404 eMail: info@tetsystems.com or use the electronic licensing request form via http://www. tetsystems.com/main_inquiry.htm

Clontech, the Clontech logo and all other trademarks are the property of Clontech Laboratories, Inc., unless noted otherwise. Clontech is a Takara Bio Company. ©2011 Clontech Laboratories, Inc.

Protocol No. PT3069-5 Clontech Laboratories, Inc. www.clontech.com Version No. PR123819