
A high-throughput qPCR system for flexible and cost-effective large panel assay testing

Mukesh Maharjan, Ph.D. Scientist, PCR applications and enzymology

For Research Use Only. Not for use in diagnostic procedures. © 2024 Takara Bio Inc. All rights reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Additional product, intellectual property, and restricted use information is available at takarabio.com.

SmartChip ND[™] system

(B) TakaRa

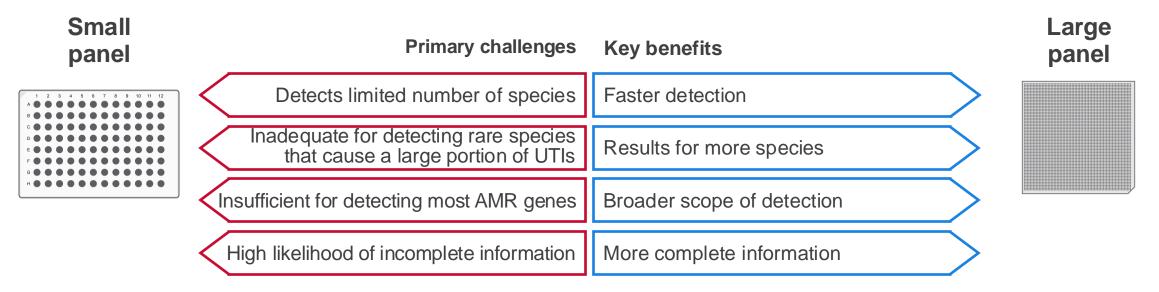
© 2024 Takara Bio Inc.

Molecular methods for pathogen detection preferred over traditional methods

Traditional bacterial culture	Primary challenges	Key benefits	Molecular methods: PCR/qPCR
	Long turnaround time (>24–48 hr)	Fast turnaround time (3 hr)	
	Limited targets	Comprehensive detection	
	Lower sensitivity	Higher sensitivity	
	Limited detection of AMR* genes	Larger coverage of AMR genes	>
	Costly in the long term	Cheaper in the long term	>

*Antimicrobial Resistance

References

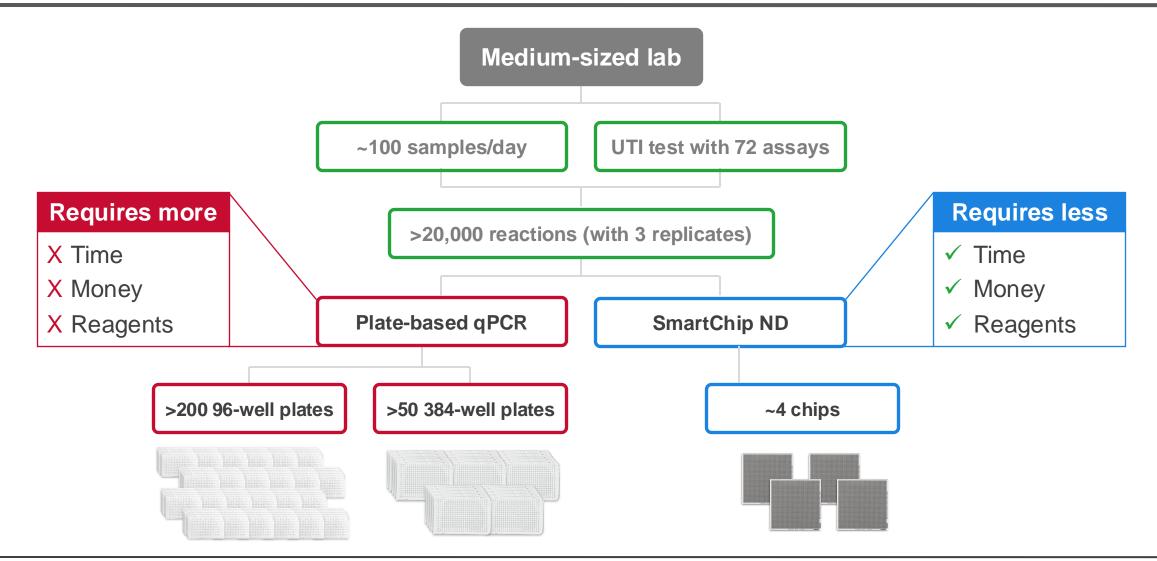

- Gu et al. Molecular diagnostics for infectious diseases: Novel approaches, clinical applications and future challenges. *Frontiers in Microbiology* (2023).
- Pfaller. Molecular approaches to diagnosing and managing infectious diseases: practicality and costs. *Emerging Infectious Diseases* (2001).
- Schmitz et al. Forty years of molecular diagnostics for infectious diseases. Journal of Clinical Microbiology (2022).

Additional benefits

- ✓ Detection of novel pathogens
- ✓ Smaller sample volumes
- ✓ Surveillance capability
- ✓ Characterization of infectious agents
- ✓ Epidemiological benefits

Large panels provide more information

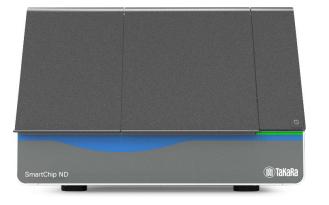
Additional benefits


- ✓ Improved accuracy and sensitivity
- $\checkmark\,$ Increased efficiency and decreased costs

References

• Upadhyay et al. Expanded PCR Panel Testing for Identification of Respiratory Pathogens and Coinfections in Influenza-like Illness. Diagnostics (Basel) (2023).

Why high-throughput qPCR?


SmartChip ND Real-Time PCR System

High-throughput pathogen detection made easy

Nanowell chip

5,184 (100 nl) reactions/chip

SmartChip ND

<1 hr sample and assay dispense

SmartChip ND Cycler

~2 hr qPCR run to data

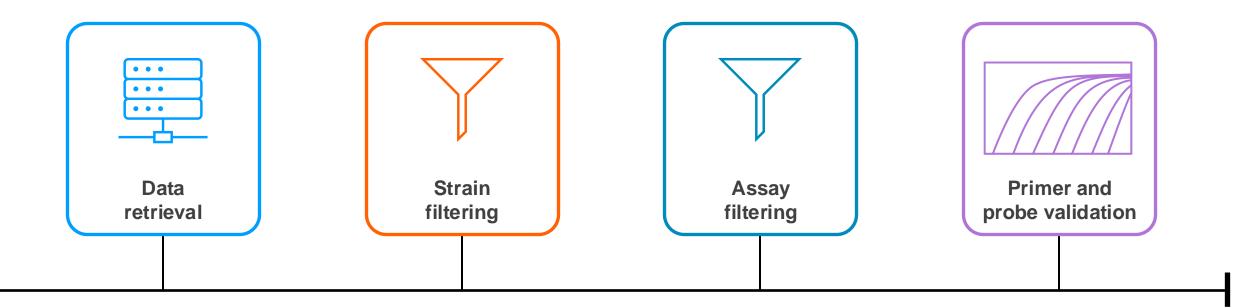
Case-study: wound, UTI, and STI panel

Wound

- 1. Bacteroides fragilis
- 2. Kingella kingae
- 3. Streptococcus pyogenes
- 4. AAC (6')-lb
- 5. AAC (6')-Ib-cr
- 6. ANT (3")-Ila/aadA
- 7. APH (3')-VIa
- 8. ermA
- 9. ermB
- 10. mefA
- 11. tetM

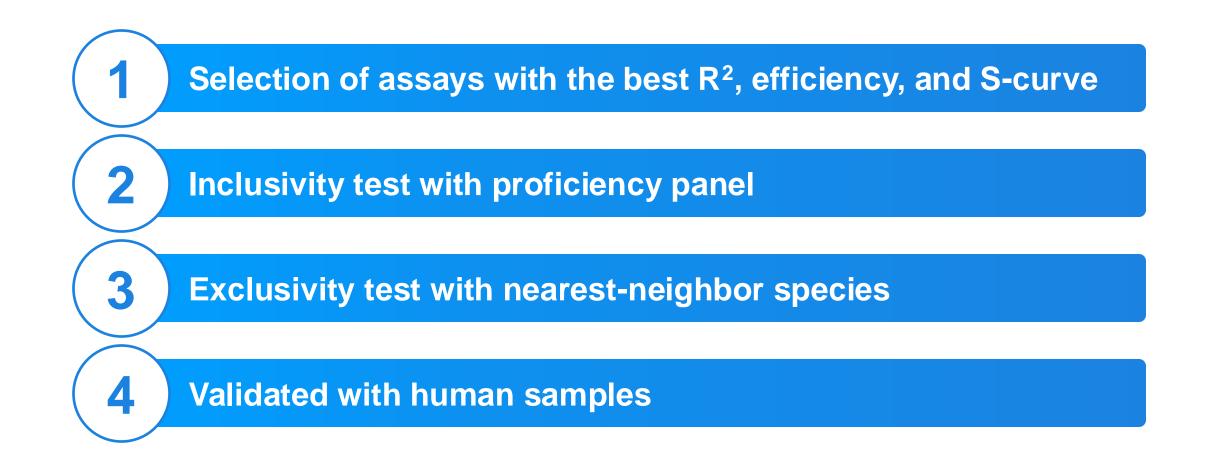
UTI

1. Acinetobacter baumannii	18. Klebsiella oxytoca	36. blaACC	54.	blaOXA-48	72.	vanB
2. Actinobaculum schaalii	19. Klebsiella pneumoniae	37. blaACT/blaMIR	55.	blaOXA-72	73.	vanC
3. Aerococcus urinae	20. Morganella morganii	38. blaCMY	56.	blaPER-1	74.	<u>Alien</u>
4. Bacillus atrophaeus	21. Mycoplasma hominis	39. blaCTX-M 1	57.	blaPER-2	75.	<u>RNaseP</u>
5. Candida albicans	22. Proteus mirabilis	40. blaCTX-M 2	58.	blaSHV	76.	<u>16s</u>
6. Candida auris	23. Proteus vulgaris	41. blaCTX-M 8/25	59.	blaTEM		
7. Candida glabrata	24. Providencia stuartii	42. blaCTX-M 9	60.	blaVEB		
8. Candida parapsilosis	25. Pseudomonas aeruginosa	43. blaDHA	61.	blaVIM		
9. Candida tropicalis	26. Serratia marcescens	44. blaFOX	62.	dfrA1		
10. Citrobacter freundii	27. Staphylococcus aureus	45. blaGES	63.	dfrA5		
11. Citrobacter koseri	28. Staphylococcus epidermidis	46. blaIMP-1	64.	mecA		
12. Corynebacterium riegelii	29. Staphylococcus haemolyticus	47. blaIMP-7	65.	nfsA		
13. Enterobacter aerogenes	30. Staphylococcus lugdunensis	48. blaIMP-16	66.	QnrA		
14. Enterobacter cloacae	31. Staphylococcus saprophyticus	49. blaKPC	67.	QnrB		
15. Enterococcus faecalis	32. Streptococcus agalactiae	50. blaMOX	68.	QnrS		
16. Enterococcus faecium	33. Streptococcus anginos	51. blaOXA-1	69.	sul1		
17. Escherichia coli	34. Streptococcus oralis	52. blaOXA-23	70.	sul2		
	35. Ureaplasma urealyticum	53. blaOXA-40	71.	vanA		


STI

- 1. Candida dubliniensis
- 2. Chlamydia trachomatis
- 3. Haemophilus ducreyi
- 4. HSVI
- 5. HSV2
- 6. Mycoplasma genitalium
- 7. Neisseria gonorrhoeae
- 8. Treponema pallidum
- 9. Trichomonas vaginalis

Legend: Fungus Parasite Virus Bacteria Antibiotic resistance gene Control


Integrating in silico design and assay validation

Relevant strain information collected from databases such as GISAID, GenBank, and whole-genome sequencing (WGS) repositories Based on clade classification and date of collection to ensure up-to-date and relevant coverage Based on sequence alignment to guarantee strain inclusivity, exclusivity, and adherence to qPCR design criteria, thus preventing non-specific amplification Final forward and reverse primers, along with FAM-labeled probes, were selected for laboratory testing

Rigorous in-lab testing

Comprehensive UTI combo panel (96 assays)

Comprehensive detection across multiple targets is a growing need!

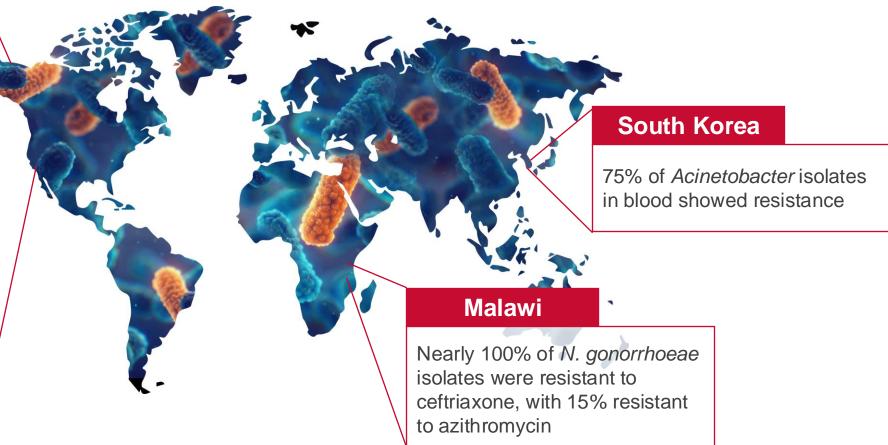
Broad target coverage = more accurate information

- Avoid misidentification and retesting delays
- Quickly identify antibiotic resistance

Better controls = higher reliability

- Process validation from extraction to detection
- Assurance of data quality \rightarrow true negative vs. false negative
- Alien spike-in control \rightarrow process control with non-homologous sequence
- RNaseP → internal control
- 16S → bacteria load control
- Bacillus atrophaeus \rightarrow extraction control

Growing need for AMR detection worldwide


United States

Since 2013

- Over 2 x 10⁶ illnesses caused by AR bacteria
- More than 23,000 deaths due to antibiotic resistant (AR) bacteria

California

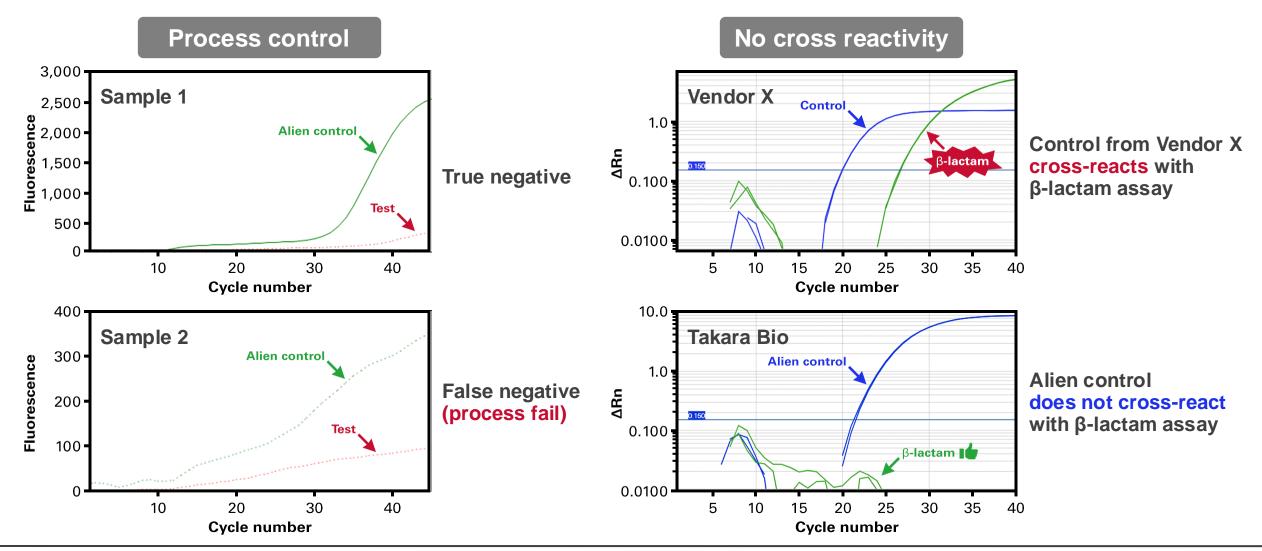
- >50% of urinary tract infections (UTIs) due to bacteria resistant to ≥1 antibiotic class
- ~13% of UTIs resistant to ≥3 antibiotic classes


Source

• Van Beusekom. Data show rising antibiotic resistance with repeat urinary tract infections. Center for Infectious Disease Research and Policy. 2024.

Alien spike-in control

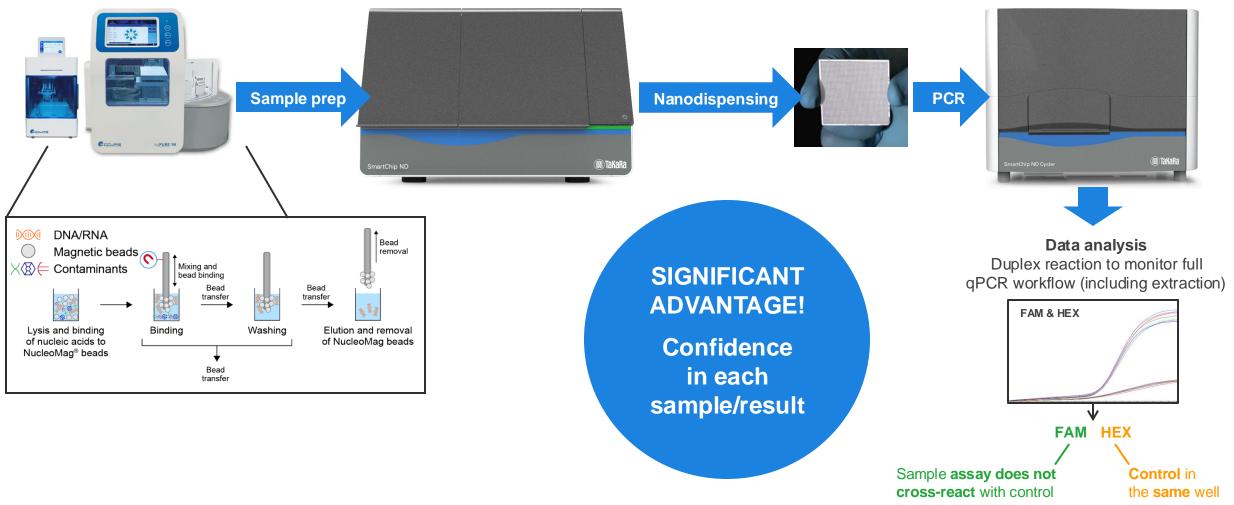
- To monitor entire molecular detection workflow
- 1 kb exogenous sequence non-homologous to human, mouse, or human-pathogen genome sequences
- Generation of shortest common super-sequence (SCS)
 - Bioinformatics to create an algorithm (avoid repeat sequences)
 - Result: nonrepetitive 1 kb sequence packed with "alien" subsequences



Choose your spike-in control

- ✓ DNA version
- ✓ RNA version with virus-like particles (VLPs)

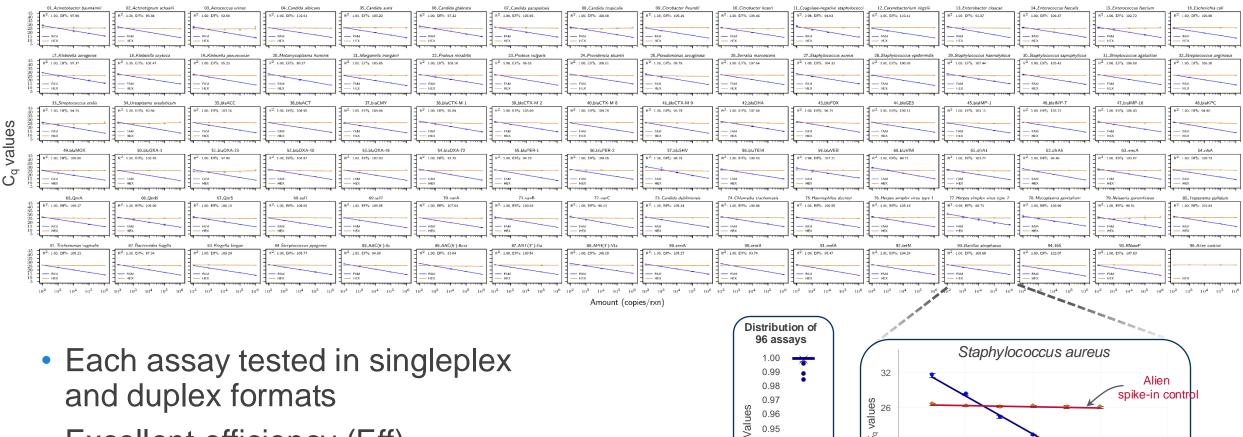
Advantages of alien spike-in control



© 2024 Takara Bio Inc.

Workflow for UTI, STI, and wound panel

IsoPure Mini or IsoPure 96



© 2024 Takara Bio Inc.

Best performing assays were selected

November 19,

 Excellent efficiency (Eff) and R² values

8

6

© 2024 Takara Bio Inc.

ບັ້₂₀

14

0

 $R^2 = 1.00$; E = 104.32%

4

Amount (copies/rxn)

2

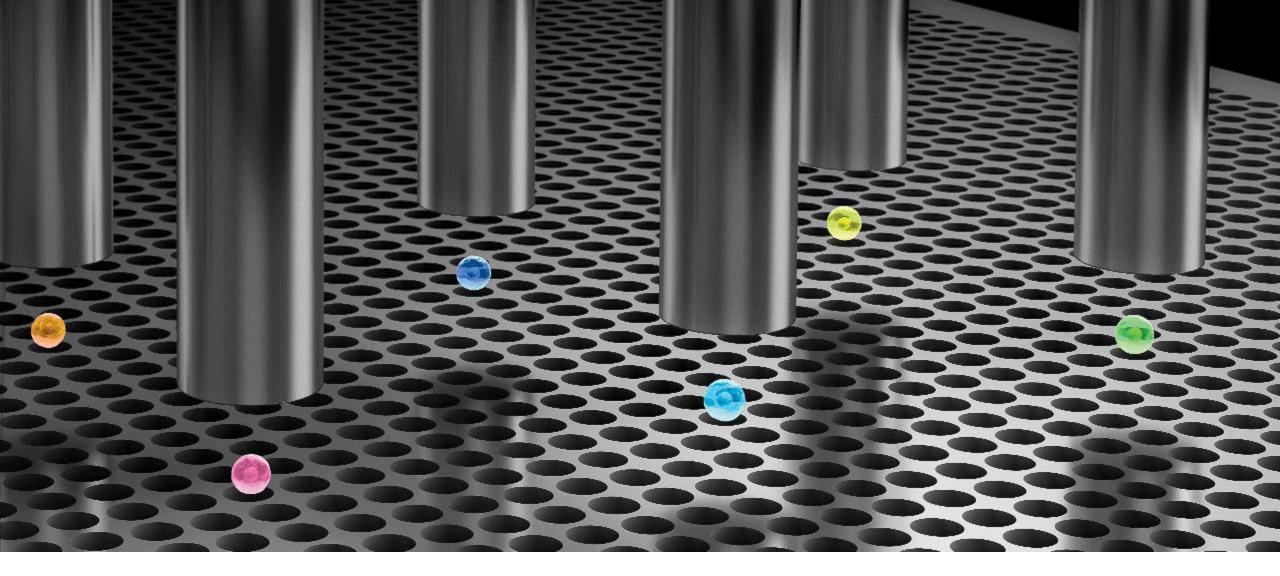
0.94 0.93

0.92

0.91

0.90

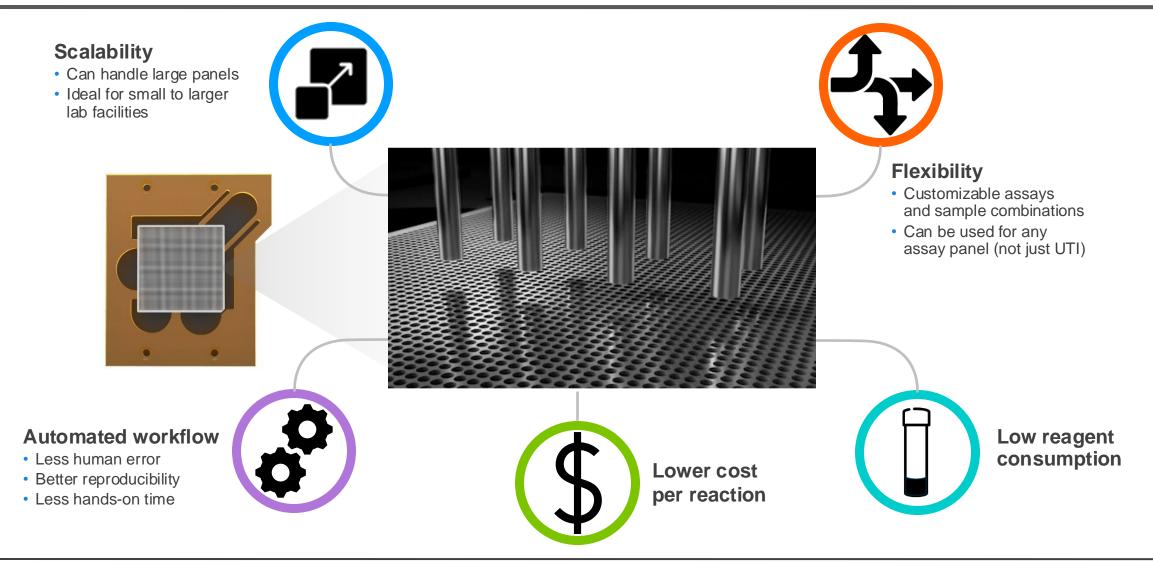
Achieved required sensitivity


All 96 assays were very sensitive and can detect as low as 10 copies per reaction
20–40 replicates tested for the calculation

• Limit of Detection (LoD) criteria: target detected for ≥95% of replicates

Acinetobacter baumannii	Citrobacter freundii	Klebsiella aerogenes	Pseudomonas aeruginosa	Streptococcus oralis	blaCTX-M 9	blaMOX	blaSHV*	QnrA	Candida dubliniensis	Trichomonas vaginalis	ermB
Actinotignum schaalii	Citrobacter koseri	Klebsiella oxytoca	Serratia marcescens	Ureaplasma urealyticum	blaDHA	blaOXA-1	blaTEM	QnrB	Chlamydia trachomatis	Bacteroides fragilis	mefA
Aerococcus urinae	Coagulase-negative staphylococci (CoNS)	Klebsiella pneumoniae	Staphylococcus aureus	blaACC	blaFOX	blaOXA-23	blaVEB	QnrS	Haemophilus ducreyi	Kingella kingae	tetM
Candida albicans	Corynebacterium riegelii	Metamycoplasma hominis	Staphylococcus epidermidis	blaACT	blaGES	blaOXA-40*	blaVIM*	sul1	Herpes simplex virus type 1	AAC(6')-Ib	Bacillus atrophaeus
Candida auris	Enterobacter cloacae	Morganella morganii	Staphylococcus haemolyticus	blaCMY	blaIMP-1	blaOXA-48	dfrA1	sul2	Herpes simplex virus type 2	AAC(6')-Ib-cr	16S*
Candida glabrata	Enterococcus faecalis	Proteus mirabilis	Staphylococcus saprophyticus	blaCTX-M 1	blaIMP-7	blaOXA-72	dfrA5	vanA	Mycoplasma genitalium	ANT(3")-Ila	RNaseP
Candida parapsilosis	Enterococcus faecium	Proteus vulgaris	Streptococcus agalactiae	blaCTX-M 2	blaIMP-16	blaPER-1	mecA	vanB	Neisseria gonorrhoeae	APH(3')-VIa	
Candida tropicalis	Escherichia coli	Providencia stuartii	Streptococcus anginosus	blaCTX-M 8	blaKPC	blaPER-2	nfsA	vanC	Treponema pallidum	ermA	

* Four assays (including 16S and β -lactam) were detected at ≤50 copies per reaction.



Advantages of the SmartChip ND System

Advantages of the SmartChip ND system

© 2024 Takara Bio Inc.

Flexible panels to fit your application needs

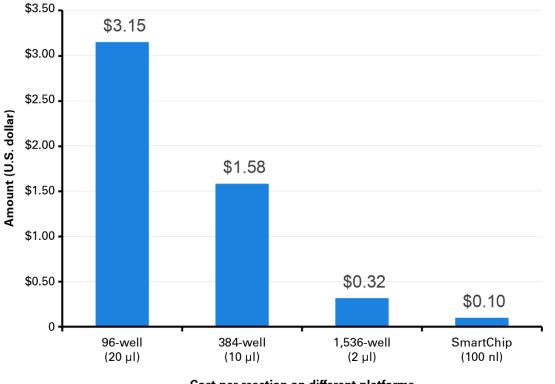
Lligh throughput CADC CoV/2 tooting		_	Sample	es/chip
High-throughput SARS-CoV-2 testing 6 assays/panel = 768 samples/chip	•	Small panel	6	768
o dobdyo, parlor – 7 oo oarripioo, orrip			12	384
			24	216
Nail fungus pathogen panel (21 assays)	•	-	36	144
			48	108
			54	96
UTI panel (≤72 assays)	•		72	72
			80	64
TaKaRa UTI plus panel (96 assays)	•	-	96	54
			120	42
			144	36
			216	24
			248	20
			296	16
Highly parallel ARG detection panel (384 assays)	4	Large panel	384	12

References

• Stedtfeld et al. Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. *FEMS Microbiology Ecolology* (2018).

Reduced reagent and time consumption

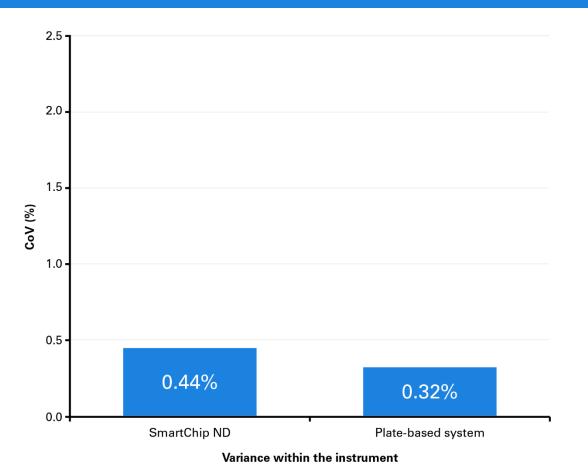
Less reagents + Less time = More savings


5,184 reactions on SmartChip ND vs. plates

Category	384-well plate (10 µl rxn)	SCND	Fold difference	
Master mix	>30 ml	<0.5 ml	>60	60-fold reagent savings compared to traditional plate-based qPCR
Assay mix	>3 ml	~100 µl	>30	
Turnaround time	~25 hr	~4 hr	>6	Turn around time is 6 times faster

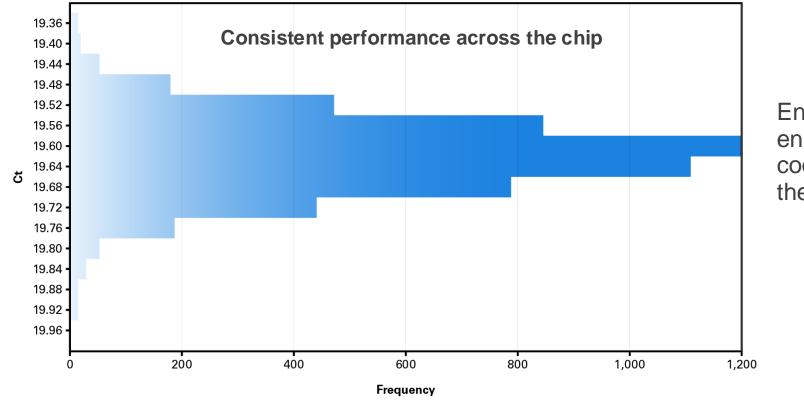
Long term cost savings

Less reagents + Less time = More savings



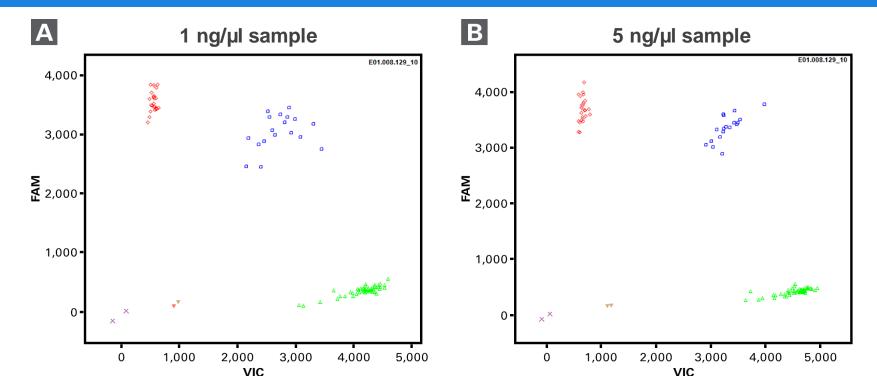
Cost per reaction on different platforms

Highly consistent results at a large scale


Highly comparable variability

© 2024 Takara Bio Inc.

Reproducible and accurate results within a run


Enclosed, humidified environment and chip cooling station ensure thermal uniformity.

Highly reproducible gene expression data. A single assay run was performed with input from a single sample. The Ct values range from 19.36–19.96, with a low standard deviation (<0.1).

Confidence in genotype clusters

Robust calling for sample concentrations as low as 1 ng/µl

The SmartChip ND system provides highly accurate and sensitive detection, which is critical for making calls when genotyping. Multiple 1 ng/µl samples (Panel A) and 5 ng/µl samples (Panel B) were run on the SmartChip ND system using the same genotyping assay. Although the 1 ng/µl samples are more diffuse, the clustering still enables calling.

Summary

- Growing demand for larger pathogen detection panels
 - qPCR a better option than culture-based methods
- SmartChip ND system for high throughput qPCR
 - Significant time and cost savings
 - 5,184 reactions per run
- Comprehensive, 96-assay qPCR panel for UTI, STI, and wound infections
 - Broadens range of detection for pathogens and antibiotic resistance genes
 - Analytical LoD values of 50–10 copies per reaction
- Alien spike-in control ensures qPCR accuracy
 - Detects inhibitors
 - Prevents false negatives

that's GOOD Science!®