A stunningly elegant mechanism underlies the adaptive immune system's ability to create a wide assortment of T-cell receptors (TCRs). Each TCR is a complex of membrane proteins unique to a T-cell clone; collectively, TCRs allow the recognition, recall, and destruction of the many pathogenic agents that vertebrates encounter. The vast majority of TCRs are heterodimers composed of two distinct subunit chains (α and β), both containing variable domains. The term "clonotype" is used to refer either to a particular TCR variant (TCR-α or TCR-β subunit) or to a particular pairing of TCR subunit variants (TCR-α and TCR-β) shared amongst a clonal population of T cells. TCR diversity is generated during the early stages of T-cell development when extensive recombination occurs between the V- and J-segments, and the V-, D-, and J-segments, in the TCR-α and TCR-β genes, respectively, via a mechanism that also incorporates and deletes additional nucleotides. This process-commonly referred to as "V(D)J recombination"-as well as a selection process that eliminates self-antigen-recognizing T cells, yields a T-cell repertoire with sufficient TCR diversity to collectively recognize any antigen.
The regions of the TCR-α and TCR-β genes that encode the "complementarity determining region 3" (CDR3), which makes primary contact with the antigen-MHC complex, are thought to be unique to each TCR-α and TCR-β variant; therefore, sequence variation in the CDR3 region serves as a useful proxy for overall T-cell repertoire diversity and is frequently used to quantify diversity in high-throughput profiling experiments. TCR-profiling experiments typically focus on capturing genomic DNA or mRNA sequences that correspond to the CDR3 region. While sequencing genomic DNA may be preferable for certain TCR-profiling applications-including those that involve quantifying various T-cell subpopulations-this approach is not without its limitations, and methods that involve analyzing mRNA sequences carry several important advantages:
- TCR mRNA templates are likely to be more highly represented than DNA templates in any one T cell, such that mRNA sequencing approaches will afford greater sensitivity and allow for more comprehensive identification of unique TCR variants, including those that are present in a very small proportion of T cells.
- Sequencing mRNA rather than genomic DNA specifically allows for the identification of expressed TCR sequences that have undergone splicing and post-transcriptional processing and are more likely to yield functional proteins. DNA-based approaches, by contrast, do not identify TCR sequences in their translated forms, and will unavoidably yield many functionally irrelevant sequences.
Our high-throughput method for TCR mRNA profiling (Figure 1) leverages SMART (Switching Mechanism at the 5′ end of RNA Template) technology, a 5'-RACE-based approach that enables efficient capture of full-length transcripts. This is followed by semi-nested PCR to fully capture and amplify TCR-α and TCR-β variable regions and prepare libraries for sequencing on Illumina® platforms. A major advantage of this method is the avoidance of multiplex PCR, which increases the likelihood of sample misrepresentation due to amplification biases.

Figure 1. Library preparation workflow and PCR strategy for TCR profiling using the SMARTer approach. Panel A. Reverse transcription and PCR amplification of TCR subunit mRNA sequences. First-strand cDNA synthesis is primed by the TCR dT Primer and performed by an MMLV-derived reverse transcriptase (RT). Upon reaching the 5′ end of each mRNA molecule, the RT adds non-templated nucleotides to the first-strand cDNA. The SMART-Seq v4 Oligonucleotide contains a sequence that is complementary to the non-templated nucleotides added by the RT, and the oligo hybridizes to the first-strand cDNA. In the template-switching step, the RT uses the remainder of the SMART-Seq v4 Oligonucleotide as a template for the incorporation of an additional sequence on the end of the first-strand cDNA. Full-length variable regions of TCR cDNA are selectively amplified by PCR using primers that are complementary to the oligonucleotide-templated sequence (SMART Primer 1) and the constant region(s) of TCR-α and/or TCR-β subunits (TCRa and/or TCRb Mouse Primer 1). A subsequent round of PCR is performed to further amplify variable regions of TCR-α and/or TCR-β subunits and incorporate adapter sequences using a TCR Primer 2 Forward HT Index and a TCRa and/or TCRb Mouse Primer 2 Reverse HT Index. Included in the primers are adapter and index sequences (Read 2 + i7 + P7 and Read 1 + i5 + P5, respectively) that are compatible with the Illumina sequencing platform. Following purification, size selection, and quality analysis, the TCR cDNA library is ready for sequencing. Panel B. Semi-nested PCR approach for amplification of TCR-α and/or TCR-β subunits. The primer pairs used for the first round of amplification capture the entire variable region(s) and most of the constant region(s) of TCR-α and/or TCR-β cDNA. The second round of amplification retains the entire variable region(s) of TCR-α and/or TCR-β cDNA and a smaller portion of the constant region(s). The anticipated size of the final TCR library cDNA (inserts + adapters) is ~700-800 bp.
The SMARTer Mouse TCR a/b Profiling Kit (Cat. Nos. 634402, 634403 & 634404) allows unparalleled sensitivity in the analysis of TCR diversity, including detection of low-abundance TCR variants, from 10 ng-500 ng of total RNA obtained from mouse immune tissues/cells including spleen, thymus, and PBMCs, or from 1,000-10,000 purified T cells. For comprehensive background information on TCR profiling and for data on the sensitivity and reproducibility of our TCR a/b profiling kits, please refer to the SMARTer Human TCR a/b Profiling Kit technical note. The mouse-specific kit uses a similar method with mouse sequence-specific primers; although the target species differs from the human kit, results from the human kit are a testament to the power of the overall method.