We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to Human repertoire
  • SMART-Seq Human BCR (with UMIs)
  • Human BCR profiling kit for Illumina sequencing
  • SMART-Seq Human TCR (with UMIs)
  • Human TCRv2 profiling kit for Illumina sequencing
  • Human TCR profiling kit for Illumina sequencing
  • Human scTCR profiling kit for Illumina sequencing
Technical notes View data for this product
SMARTer Human scTCR Demultiplexer Get the demultiplexer software for this product
TCR and BCR profiling tips 4 factors to consider for TCR/BCR profiling
Home › Products › Next-generation sequencing › Immune profiling › Human repertoire › Human scTCR profiling kit for Illumina sequencing

Immune profiling

  • Human repertoire
    • SMART-Seq Human BCR (with UMIs)
    • Human BCR profiling kit for Illumina sequencing
    • SMART-Seq Human TCR (with UMIs)
    • Human TCRv2 profiling kit for Illumina sequencing
    • Human scTCR profiling kit for Illumina sequencing
  • Mouse repertoire
    • SMART-Seq Mouse BCR (with UMIs)
    • SMART-Seq Mouse TCR (with UMIs)
    • Mouse BCR profiling kit for Illumina sequencing
    • Mouse TCR profiling kit for Illumina sequencing
Need help?
Contact Sales
Technical notes View data for this product
SMARTer Human scTCR Demultiplexer Get the demultiplexer software for this product
TCR and BCR profiling tips 4 factors to consider for TCR/BCR profiling

SMARTer Human scTCR a/b Profiling Kit—elucidate alpha-beta chain pairings of T-cell receptors in single cells

SMARTer Human scTCR a/b Profiling Kit

Although sequencing of bulk T cell samples has helped to further understanding of T-cell receptor (TCR) repertoire diversity, bulk sequencing cannot determine the pairing of specific alpha-beta receptor chains within the population of T cells. Since the unique alpha-beta pairing of a TCR mediates antigen specificity, obtaining pairing information will be crucial for providing insights on antigen recognition. While sequencing of single T cells can determine the pairing on a given cell, it can be prohibitively expensive and involves complicated analyses since most methods require sequencing of a large number of cells.

Although sequencing of bulk T cell samples has helped to further understanding of T-cell receptor (TCR) repertoire diversity, bulk sequencing cannot determine the pairing of specific alpha-beta receptor chains within the population of T cells. Since the unique alpha-beta pairing of a TCR mediates antigen specificity, obtaining pairing information will be crucial for providing insights on antigen recognition. While sequencing of single T cells can determine the pairing of a given cell, it can be prohibitively expensive and involves complicated analyses since most methods require sequencing of a large number of cells.

With the SMARTer Human scTCR a/b Profiling Kit, we solve this problem by performing SMART cDNA synthesis with a set of unique indexed oligos that allow the condensing of 96 samples, which have been sorted manually or via FACS, into twelve pools for sequencing. Additionally, the approach enables the twelve pools to be further multiplexed such that all 96 samples are run in a single flow-cell lane. Much like the SMARTer Human TCR a/b Profiling Kit for bulk samples, this kit combines SMART cDNA synthesis and RACE-based PCR, followed by TCR gene-specific PCR to fully capture and amplify TCR-alpha and TCR-beta variable regions to generate Illumina-ready libraries that provide a highly sensitive approach to sequencing TCRs.

If you are looking for the software to demultiplex your sequencing data generated with this kit, please visit the SMARTer Human scTCR Demultiplexer webpage.

 More  Less
Cat. # Product Size Price License Quantity Details
634431 SMARTer® Human scTCR a/b Profiling Kit 96 Rxns USD $4052.00

License Statement

ID Number  
325 Patent pending. For further information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.

The SMARTer Human TCR a/b Profiling Kit enables users to analyze T-cell receptor (TCR) diversity from single T cells that have been sorted into a 96-well plate. As the name suggests, the kit can be used to generate data for both alpha- and beta-chain diversity. The kit leverages SMART technology and employs a 5' RACE-like approach to capture complete V(D)J variable regions of TCR transcripts. Included in the kit are primers that incorporate Illumina-specific adaptor sequences during cDNA amplification. The protocol generates indexed libraries that are ready for sequencing on Illumina platforms.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

634431: SMARTer Human scTCR a/b Profiling Kit

634431: SMARTer Human scTCR a/b Profiling Kit

Back

Why single-cell TCR analysis is needed

Why single-cell TCR analysis is needed

Benefits of studying T cells at the single-cell level. Panel A. Schematic of a T-cell receptor comprised of an alpha chain (TCR-α) and a beta chain (TCR-β). Panel B. Schematic representing the difficulties of obtaining pairing information for alpha and beta chains from bulk sequencing data. Rare clonotypes can allow for assessing the pairing of some cells (clonotypes in orange). However, for the more highly expressed clonotypes (TCRA V2J1, TCRA V1J2, TCRB V3D1J1, TCRB V2D1J2) there are four possible pairing combinations.

Back

Bioanalyzer traces from example TCR libraries

Bioanalyzer traces from example TCR libraries

Electropherogram profiles of TCR sequencing libraries. Electropherograms from three different cell pools (see technical note for more details): Pool 9 (Panel A), 10 (Panel B), and 11 (Panel C). The variation in the profiles reflects the abundance of amplified TCRa (peak at ~900 bp) and TCRb (peak at ~700 bp). Panel D. Positive Control RNA TCR library (generated with 8 x 5 pg Control Jurkat Total RNA). Panel E. Negative Control TCR library shows no library is produced.

Back

Cell-type calling and alpha-beta pairing analysis of a mixed population of cells

Cell-type calling and alpha-beta pairing analysis of a mixed population of cells

Analysis of a mixed cell population from a 96-well plate. Panel A. Cell-type calling based on the identified clonotypes for each well. The seven omitted cells did not have clonotype calls for either TCRa or TCRb with read numbers that were above the threshold. Panel B. Analysis of pairing information. Paired TCR-αβ chains were obtained for 34 cells in the plate. Panel C. The alpha, beta, or alpha-beta pairing information represented as a percent of cells analyzed. Omitted cells were not included in this analysis.

Back

The SMARTer scTCR workflow uses optimized indexing to allow for pooling 96 cells into 12 libraries.

The SMARTer scTCR workflow uses optimized indexing to allow for pooling 96 cells into 12 libraries.

SMARTer Human scTCR a/b Profiling Kit workflow and pooling strategy. Panel A. First-strand cDNA synthesis is dT-primed (RT Primer) and performed by an MMLV-derived reverse transcriptase (RT), which adds nontemplated nucleotides to the 5' end of each mRNA template. The SMART-Seq Indexed Oligos anneal to these nontemplated nucleotides and serve as a template for the incorporation of an additional sequence of nucleotides into the first-strand cDNA by the RT (this is the template-switching step). Each of the eight different SMART-Seq Indexed Oligos provided in the kit each contains a unique six-base in-line index that serves as a cell barcode to allow downstream cell identification after pooling. The additional sequence added to the cDNA by the RT—referred to as the "SMART sequence"—serves as a primer-annealing site for subsequent rounds of PCR, ensuring that only sequences from full-length cDNAs undergo amplification. After pooling (described in Panel B) and a cleanup step, two rounds of gene-specific PCR are performed in succession to amplify cDNA sequences corresponding to variable regions of TCRa and/or TCRb transcripts. The first gene-specific PCR uses the amplified double-stranded cDNA as a template and includes a forward primer with complementarity to the SMART sequence—which also incorporates the Illumina Read 2 sequence (TCR Primer 1)—and reverse primers that are complementary to the constant (i.e., nonvariable) region of TCRa and TCRb (TCR a/b Human Primer 1). The second round of PCR takes the product from the first PCR as a template and uses a forward primer that binds to the Read 2 sequence added by the previous PCR step. The reverse primers bind in the constant region, internal to the PCR1 primers (TCR a/b Human Primer 2 Reverse HT Index) allowing amplification of the entire variable region and a portion of the constant region of TCRa and TCRb cDNA. The forward and reverse primers include adapter and index sequences that are compatible with the Illumina sequencing platform and allow for multiplexing of up to 96 samples in a single flow-cell lane. Panel B. Samples are pooled by column, such that each pool contains eight cells each with a differently indexed SMART-Seq Indexed Oligo. Different combinations of the Forward and Reverse HT indexes are used during PCR 2 to allow multiplexing of the samples into a single flow-cell lane (see the User Manual for more details).

634432 SMARTer® Human scTCR a/b Profiling Kit 480 Rxns Inquire for Quotation

License Statement

ID Number  
325 Patent pending. For further information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.
*

The SMARTer Human TCR a/b Profiling Kit enables users to analyze T-cell receptor (TCR) diversity from single T cells that have been sorted into a 96-well plate. As the name suggests, the kit can be used to generate data for both alpha- and beta-chain diversity. The kit leverages SMART technology and employs a 5' RACE-like approach to capture complete V(D)J variable regions of TCR transcripts. Included in the kit are primers that incorporate Illumina-specific adaptor sequences during cDNA amplification. The protocol generates indexed libraries that are ready for sequencing on Illumina platforms.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components You May Also Like Image Data

Back

Why single-cell TCR analysis is needed

Why single-cell TCR analysis is needed

Benefits of studying T cells at the single-cell level. Panel A. Schematic of a T-cell receptor comprised of an alpha chain (TCR-α) and a beta chain (TCR-β). Panel B. Schematic representing the difficulties of obtaining pairing information for alpha and beta chains from bulk sequencing data. Rare clonotypes can allow for assessing the pairing of some cells (clonotypes in orange). However, for the more highly expressed clonotypes (TCRA V2J1, TCRA V1J2, TCRB V3D1J1, TCRB V2D1J2) there are four possible pairing combinations.

Back

Bioanalyzer traces from example TCR libraries

Bioanalyzer traces from example TCR libraries

Electropherogram profiles of TCR sequencing libraries. Electropherograms from three different cell pools (see technical note for more details): Pool 9 (Panel A), 10 (Panel B), and 11 (Panel C). The variation in the profiles reflects the abundance of amplified TCRa (peak at ~900 bp) and TCRb (peak at ~700 bp). Panel D. Positive Control RNA TCR library (generated with 8 x 5 pg Control Jurkat Total RNA). Panel E. Negative Control TCR library shows no library is produced.

Back

Cell-type calling and alpha-beta pairing analysis of a mixed population of cells

Cell-type calling and alpha-beta pairing analysis of a mixed population of cells

Analysis of a mixed cell population from a 96-well plate. Panel A. Cell-type calling based on the identified clonotypes for each well. The seven omitted cells did not have clonotype calls for either TCRa or TCRb with read numbers that were above the threshold. Panel B. Analysis of pairing information. Paired TCR-αβ chains were obtained for 34 cells in the plate. Panel C. The alpha, beta, or alpha-beta pairing information represented as a percent of cells analyzed. Omitted cells were not included in this analysis.

Back

The SMARTer scTCR workflow uses optimized indexing to allow for pooling 96 cells into 12 libraries.

The SMARTer scTCR workflow uses optimized indexing to allow for pooling 96 cells into 12 libraries.

SMARTer Human scTCR a/b Profiling Kit workflow and pooling strategy. Panel A. First-strand cDNA synthesis is dT-primed (RT Primer) and performed by an MMLV-derived reverse transcriptase (RT), which adds nontemplated nucleotides to the 5' end of each mRNA template. The SMART-Seq Indexed Oligos anneal to these nontemplated nucleotides and serve as a template for the incorporation of an additional sequence of nucleotides into the first-strand cDNA by the RT (this is the template-switching step). Each of the eight different SMART-Seq Indexed Oligos provided in the kit each contains a unique six-base in-line index that serves as a cell barcode to allow downstream cell identification after pooling. The additional sequence added to the cDNA by the RT—referred to as the "SMART sequence"—serves as a primer-annealing site for subsequent rounds of PCR, ensuring that only sequences from full-length cDNAs undergo amplification. After pooling (described in Panel B) and a cleanup step, two rounds of gene-specific PCR are performed in succession to amplify cDNA sequences corresponding to variable regions of TCRa and/or TCRb transcripts. The first gene-specific PCR uses the amplified double-stranded cDNA as a template and includes a forward primer with complementarity to the SMART sequence—which also incorporates the Illumina Read 2 sequence (TCR Primer 1)—and reverse primers that are complementary to the constant (i.e., nonvariable) region of TCRa and TCRb (TCR a/b Human Primer 1). The second round of PCR takes the product from the first PCR as a template and uses a forward primer that binds to the Read 2 sequence added by the previous PCR step. The reverse primers bind in the constant region, internal to the PCR1 primers (TCR a/b Human Primer 2 Reverse HT Index) allowing amplification of the entire variable region and a portion of the constant region of TCRa and TCRb cDNA. The forward and reverse primers include adapter and index sequences that are compatible with the Illumina sequencing platform and allow for multiplexing of up to 96 samples in a single flow-cell lane. Panel B. Samples are pooled by column, such that each pool contains eight cells each with a differently indexed SMART-Seq Indexed Oligo. Different combinations of the Forward and Reverse HT indexes are used during PCR 2 to allow multiplexing of the samples into a single flow-cell lane (see the User Manual for more details).

Back

634432: SMARTer Human scTCR a/b Profiling Kit

634432: SMARTer Human scTCR a/b Profiling Kit

*You must be logged in to a Purchasing Account in order to purchase these products online, since the purchase of these products may be restricted depending on your account type. Researchers at not-for-profit accounts receive a limited use license with their purchase of the product. Researchers at for-profit accounts must obtain a license prior to purchase. For details please contact licensing@takarabio.com.

Overview

  • Flexible workflow: Illumina-ready libraries from FACS or manually sorted single cells
  • Ease of use: optimized indexing allows for pooling 96 cells into twelve libraries which can be further multiplexed for running in a single flow-cell lane
  • Sensitivity: RACE-based approach allows for the detection of low-abundance TCR variants
  • Specificity: full-length reads, with the majority of reads on target and accurate pairing information

More Information

Applications

  • Human TCR repertoire analysis in single cells (TCR-alpha and TCR-beta subunits)
  • TCR alpha-beta pairing determination in single cells

Additional product information

Please see the product's Certificate of Analysis for information about storage conditions, product components, and technical specifications. Please see the Kit Components List to determine kit components. Certificates of Analysis and Kit Components Lists are located under the Documents tab.


Powered by Bioz See more details on Bioz
Powered by Bioz See more details on Bioz

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us