We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to DNA-seq
  • NGS library prep with enzymatic fragmentation
  • Comparing ThruPLEX FLEX EF to Kapa and NEBNext
  • Next-gen WGA method for CNV and SNV detection from single cells
  • Low-input whole-exome sequencing
  • DNA-seq from FFPE samples
  • Low cell number ChIP-seq using ThruPLEX DNA-Seq
  • Detection of low-frequency variants using ThruPLEX Tag-Seq FLEX
  • ThruPLEX FLEX outperforms NEBNext Ultra II
  • Streamlined DNA-seq from challenging samples
  • High-resolution CNV detection using PicoPLEX Gold DNA-Seq
  • ThruPLEX FLEX data sheet
  • Low-volume DNA shearing for ThruPLEX library prep
ThruPLEX  DNA-seq FLEX EF product page ThruPLEX FLEX EF product information
ThruPLEX FLEX EF tech note ThruPLEX FLEX EF tech note
Home › Learning centers › Next-generation sequencing › Technical notes › DNA-seq › Comparing ThruPLEX FLEX EF to Kapa and NEBNext

Technical notes

  • DNA-seq
    • NGS library prep with enzymatic fragmentation
    • Comparing ThruPLEX FLEX EF to Kapa and NEBNext
    • Next-gen WGA method for CNV and SNV detection from single cells
    • Low-input whole-exome sequencing
    • DNA-seq from FFPE samples
    • Low cell number ChIP-seq using ThruPLEX DNA-Seq
    • Detection of low-frequency variants using ThruPLEX Tag-Seq FLEX
    • ThruPLEX FLEX outperforms NEBNext Ultra II
    • Streamlined DNA-seq from challenging samples
    • High-resolution CNV detection using PicoPLEX Gold DNA-Seq
    • ThruPLEX FLEX data sheet
    • Low-volume DNA shearing for ThruPLEX library prep
  • Immune Profiling
    • Track B-cell changes in your mouse model
    • Efficient and sensitive profiling of human B-cell receptor repertoire
    • TCRv2 kit validated for rhesus macaque samples
    • Improved TCR repertoire profiling from mouse samples (bulk)
    • TCR repertoire profiling from mouse samples (bulk)
    • BCR repertoire profiling from mouse samples (bulk)
    • Improved TCR repertoire profiling from human samples (bulk)
    • TCR repertoire profiling from human samples (single cells)
    • BCR repertoire profiling from human samples (bulk)
  • Epigenetic sequencing
    • ChIP-seq libraries for transcription factor analysis
    • ChIP-seq libraries from ssDNA
    • Full-length small RNA libraries
    • Methylated DNA-seq with MBD2
  • Reproductive health technologies
    • Embgenix ESM Screen
    • Embgenix PGT-A
New products
Need help?
Contact Sales
ThruPLEX  DNA-seq FLEX EF product page ThruPLEX FLEX EF product information
ThruPLEX FLEX EF tech note ThruPLEX FLEX EF tech note
Tech Note

Comparing ThruPLEX DNA-Seq FLEX EF to KAPA HyperPlus and NEBNext Ultra II FS

Note: The protocols and QC procedures ThruPLEX DNA-Seq HV PLUS have been updated to accommodate lower inputs and compatibility with the Unique Dual Index Kit sets. While product naming has been revised accordingly (ThruPLEX DNA-Seq FLEX EF), reagent formulations remain unchanged.

Introduction Results Conclusion Methods

Introduction  

ThruPLEX DNA-Seq FLEX is a complete, fast, and accurate system that enables reproducible sequencing readouts from challenging sample types. With the addition of an enzymatic fragmentation module, ThruPLEX DNA-Seq FLEX EF performs size-tunable enzymatic fragmentation in tandem with template repair to generate NGS-ready libraries from intact DNA with only 15 min of hands-on time (Figure 1).

When combined with Unique Dual Index Kit sets, ThruPLEX DNA-Seq FLEX EF allows for multiplexing of up to 384 libraries on Illumina® sequencing platforms. Both ThruPLEX DNA-Seq FLEX and ThruPLEX DNA-Seq FLEX EF can accommodate double-stranded DNA samples up to 200 ng with input volumes up to 30 µl. This industry-leading, three-step, single-tube workflow prevents sample loss and eliminates the need for additional time-consuming bead purifications.

Results  

Familiar workflow, improved with fragmentation

Figure 1. ThruPLEX DNA-Seq FLEX EF single-tube library preparation workflow. The ThruPLEX DNA-Seq FLEX EF workflow consists of three simple steps that take place in the same well or PCR tube, eliminating the need to purify or transfer the sample material. With this latest version of ThruPLEX technology, an enzymatic fragmentation step at the start of the protocol streamlines the generation of high-complexity libraries from up to 200 ng of intact double-stranded DNA at input volumes of up to 30 µl.

 

ThruPLEX DNA-Seq FLEX EF KAPA HyperPlus NEBNext Ultra II FS
Hands-on time 15 min 20 min 20 min
Total time 2.4–2.6 hr 2.5–2.7 hr 3.1–3.2 hr
Single-tube workflow Yes No No
Adapter dilution No Yes Yes
Intermediate cleanup No Yes Yes
Post-ligation size selection No No Yes (>100 ng)

Table 1. Comparison of three leading NGS library preparation chemistries. Total time is representative of the range of time required to amplify inputs of 5 ng and 200 ng with each chemistry to yield sufficient Illumina-compatible, dual-indexed library for target enrichment. ThruPLEX FLEX is the only single-tube workflow and chemistry which does not require adapter dilution, intermediate cleanup, or post-ligation size selection. The culmination of these features is the quickest protocol with the least amount of hands-on time of any NGS library prep kit on the market.

ThruPLEX DNA-Seq FLEX EF builds upon the coveted single-tube workflow of ThruPLEX DNA-Seq FLEX with a modified template preparation step that includes an enzymatic fragmentation module in parallel with (and under the same conditions as) template repair (Figure 1, Table 1). Included with ThruPLEX DNA-Seq FLEX EF are optimized protocols for generating DNA fragments of 300 or 450 bp (Figure 2). Fragment size can be modulated by simply varying the concentration of fragmentation enzyme, thereby eliminating the need for input-specific reaction times or extra time for mechanical fragmentation. Furthermore, the kit decreases hands-on time by eliminating the need for adapter dilution and protocol optimization (Table 1). No matter what size fragment or sample input type, the total workflow time remains consistent.

Figure 2. Bioanalyzer analysis of libraries prepared using ThruPLEX DNA-Seq FLEX EF. Libraries were prepared from 5 ng of Control Human gDNA using ThruPLEX DNA-Seq FLEX EF. Post library amplification, libraries were purified following the AMPure XP protocol. An aliquot of purified library was diluted to 5 ng/μl in TE buffer, and 1 μl of this diluted sample was loaded onto a Bioanalyzer High Sensitivity DNA Analysis chip (Agilent Technologies). The blue trace is a library generated from the 300-bp protocol, and the red trace is a library generated from the 450-bp protocol.

Improved library preparation

Preparing NGS libraries from input material of a low starting concentration can lead to a library pool of poor complexity. This can be further diminished by a low input volume and template damage introduced during mechanical shearing. To combat this, ThruPLEX DNA-Seq FLEX EF accommodates a large input volume of 30 µl and utilizes enzymatic fragmentation.

Starting with samples of low concentration requires PCR amplification to obtain sufficient quantities of library for sequencing. Regions of high GC content within template molecules form strong secondary structures and can introduce PCR bias by resisting denaturation and amplification. This bias can lead to low yields, uneven representation of coverage, and low coverage depth in regions of interest. Through reformulation of ThruPLEX FLEX chemistry and workflow optimization, ThruPLEX DNA-Seq FLEX EF ensures accurate representation of the original material by minimizing bias and enabling improved coverage of high-GC regions.

Uniform library coverage across input levels

Sequencing libraries must accurately and proportionally cover a given sample’s complete sequence to represent the input material faithfully. This becomes increasingly more challenging as input concentrations are reduced as the chances of uniformly covering the sample decrease. Additionally, at lower input concentrations, reproducibility can be compromised. The ThruPLEX DNA-Seq FLEX EF kit demonstrates coverage uniformity across a wide input range, with excellent reproducibility at the lower end (Figure 3).

Figure 3. Reproducibility and uniform coverage across input levels. Correlation plots are shown for replicate library preparations generated with ThruPLEX DNA-Seq FLEX EF from 5 and 200 ng of NA12878 DNA and downsampled to 5 million total reads. Coverage of each 100-kb region of hg19 was compared across inputs. Comparison of two independent 5-ng library preps (right), and two different starting inputs of 5 and 200 ng (left), demonstrate the high reproducibility of the system.

Competitive library coverage uniformity

Generation of high-complexity libraries is critical for achieving even coverage throughout the genome for whole-genome sequencing. When compared to KAPA HyperPlus and NEBNext Ultra II FS, libraries generated using ThruPLEX DNA-Seq FLEX EF show coverage much closer to ideal normalized coverage (Figure 4). For intermediate GC compositions, all three kits perform similarly. As the GC content increases, the ThruPLEX DNA-Seq FLEX EF data remain true to the ideal normalized coverage, while results for the KAPA and NEB kits diverge dramatically. This holds true for both 5-ng and 50-ng sample inputs, further highlighting the coverage uniformity advantage provided by ThruPLEX DNA-Seq FLEX EF across sample inputs (Table 2).

Figure 4. Superior coverage uniformity. Libraries were prepared in triplicate from 5-ng and 50-ng inputs of NA12878 gDNA. Libraries were generated following ThruPLEX DNA-Seq FLEX EF, KAPA HyperPlus, or NEBNext Ultra II FS protocols. Paired-end sequencing was performed on a NextSeq® 500/550 Mid Output Kit v2.5 (150 Cycles), and total reads were downsampled to 5 million total reads. The vertical blue bars represent the expected GC content distribution using 100-bp windows.

Input Total reads aligned % reads aligned % chimera % duplicate
ThruPLEX DNA-Seq FLEX EF 50 ng 4.83E+06 96.69% 0.49% 0.75%
5 ng 4.84E+06 96.73% 0.50% 0.80%
NEBNext Ultra II FS 50 ng 4.78E+06 95.86% 1.38% 0.89%
5 ng 4.79E+06 96.16% 1.68% 1.06%
KAPA HyperPlus 50 ng 4.76E+06 95.55% 1.71% 1.24%
5 ng 4.71E+06 94.80% 1.06% 1.47%

Table 2. Comparison of different library preparation kits with integrated fragmentation modules. Sample inputs used were 50 ng or 5 ng. % reads aligned refers to those successfully aligned to a reference genome. % chimera refers to the percentage of reads that align to two distinct portions of the genome. % duplicate refers to the percentage of reads originated from a single fragment of DNA, typically during library construction via PCR.

Conclusion  

ThruPLEX FLEX chemistry is engineered and optimized to generate DNA libraries with high molecular complexity and balanced GC representation from input volumes of up to 200 ng in 30 µl. Through workflow optimization, reformulation, and incorporation of an enzymatic fragmentation module, ThruPLEX DNA-Seq FLEX EF kits perform size-tunable enzymatic fragmentation and template repair in parallel to generate NGS-ready libraries in a single tube in about 2.5 hours with only 15 minutes of hands-on time. In head-to-head comparison experiments, ThruPLEX DNA-Seq FLEX EF outperforms both KAPA HyperPLUS and NEBNext Ultra II FS in coverage of regions with increasing GC content. ThruPLEX DNA-Seq FLEX EF provides efficiency, simplicity, and reliability in a single-tube workflow, suitable for challenging whole genome sequencing experiments.

Methods  

DNA preparation

The concentration of human genomic DNA (NA12878) was measured using a Qubit 2.0 Fluorometer with Quant-IT dsDNA Assay Kit, high sensitivity (Thermo Fisher Scientific).

Library preparation

Libraries were prepared according to the manufacturer's instructions using ThruPLEX DNA-Seq FLEX EF, KAPA HyperPlus or NEBnext Ultra II FS. All libraries were generated using dual indexes. Amplified libraries were purified using AMPure XP (Beckman Coulter) and eluted in low TE buffer for whole genome sequencing (WGS). Size of purified libraries was assessed by Agilent 2100 BioAnalyzer using High Sensitivity DNA Reagents. Libraries were quantified by Qubit 2.0 Fluorometer with Quant-IT dsDNA Assay Kit, high sensitivity (Thermo Fisher Scientific).

Illumina sequencing

Quantified post-PCR libraries were pooled and loaded onto a NextSeq® 500/550 v2.5 flow cell for sequencing. Libraries were loaded following Illumina’s recommended loading concentrations.

Data analysis

Raw sequencing reads were downsampled to equal numbers across all samples using seqtk (v1.3-r106) and quality processed to remove adapters and low-quality bases using trimmomatic (v0.36). Quality processed reads were aligned to the UCSC hg19 reference genome with bowtie2 (v2.3.4.3) with default parameters. Resulting SAM files were coordinate sorted using Picard SortSam (v2.18.3) and converted to BAM files with samtools view (v1.8). Duplicate reads were identified and marked from sorted BAM files with Picard MarkDuplicates (v2.18.3) and used as input to collect alignment, insert size, GC bias, and various WGS metrics with Picard AlignmentSummaryMetrics (v2.18.3), Picard CollectInsertSizeMetrics (v2.18.3), Picard CollectGcBiasMetrics (v2.18.3), and Picard CollectWgsMetrics (v2.18.3), respectively.

Related Products

Cat. # Product Size Price License Quantity Details
635100 ThruPLEX® DNA-Seq FLEX EF 24 Rxns USD $790.00

License Statement

ID Number  
326 This product is protected by U.S. Patents 7,803,550; 8,399,199; 8,728,737, 9,598,727, 10,196,686, 10,208,337, 11,072,823 and corresponding foreign patents. Additional patents are pending. For further license information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.

ThruPLEX DNA-Seq FLEX EF employs enzymatic fragmentation with a simple, three-step workflow to generate high-complexity DNA libraries from intact, double-stranded DNA. Unique dual index (UDI) kits are available for purchase separately. This product contains reagents for 24 reactions.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components
635101 ThruPLEX® DNA-Seq FLEX EF 96 Rxns USD $2659.00

License Statement

ID Number  
326 This product is protected by U.S. Patents 7,803,550; 8,399,199; 8,728,737, 9,598,727, 10,196,686, 10,208,337, 11,072,823 and corresponding foreign patents. Additional patents are pending. For further license information, please contact a Takara Bio USA licensing representative by email at licensing@takarabio.com.

ThruPLEX DNA-Seq FLEX EF employs enzymatic fragmentation with a simple, three-step workflow to generate high-complexity DNA libraries from intact, double-stranded DNA. Unique dual index (UDI) kits are available for purchase separately. This product contains reagents for 96 reactions.

Notice to purchaser

Our products are to be used for Research Use Only. They may not be used for any other purpose, including, but not limited to, use in humans, therapeutic or diagnostic use, or commercial use of any kind. Our products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products or to provide a service to third parties without our prior written approval.

Documents Components

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us