We use cookies to improve your browsing experience and provide meaningful content. Read our cookie policy. Accept
  •  Customer Login
  • Register
  •  View Cart (0)
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio
…
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us

Clontech Takara Cellartis

Close

  • ‹ Back to FAQs and tips
  • Positive and negative controls in scRNA-seq
  • DNA-seq FAQs
  • ChIP-seq FAQs
  • Indexing FAQs
  • TCR-seq methods: Q&A
SMARTer NGS for TCR SMARTer Human TCR a/b Profiling Kit v2
Home › Learning centers › Next-generation sequencing › FAQs and tips › TCR-seq methods: Q&A

Next-generation sequencing

  • Product line overview
  • RNA-seq
    • Automated library prep
    • Technologies and applications
      • SMART technology
      • Single-cell mRNA-seq
      • Total RNA-seq
      • SMART-Seq PLUS solutions
    • Technotes
      • Enabling long-read RNA sequencing from low-input samples
      • Singular for low input total RNA seq
      • All-in-one cDNA synthesis and library prep from single cells
      • Automation-friendly, all-in-one cDNA synthesis and library prep
      • All-in-one cDNA synthesis and library prep from ultra-low RNA inputs
      • 3' mRNA libraries from single cells (SMART-Seq v4 3' DE Kit)
      • Full-length mRNA-seq for target capture
      • Stranded libraries from single cells
      • Stranded libraries from picogram-input total RNA (v3)
      • Stranded libraries from 100 pg-100 ng total RNA
      • Stranded libraries from 100 ng - 1 ug total RNA
      • Stranded libraries from FFPE inputs (v2)
      • Nonstranded libraries from FFPE inputs
      • Singular and Takara Bio library prep
      • Full-length, single-cell, and ultra-low-input RNA-seq with UMIs
    • Webinars
      • Pushing the limits of sensitivity for single-cell applications
      • Capturing biological complexity by high-resolution single-cell genomics
      • Taking single-cell RNA-seq by STORM
      • STORM-seq Q&A
      • Neural multiomics Q&A
      • Liver metabolic function, dissecting one cell at a time
      • Pushing the limits Q&A
      • Total RNA sequencing of liquid biopsies
      • Liver metabolic function Q&A
      • Automating full-length single-cell RNA-seq libraries
      • Single-cell whole transcriptome analysis
      • Sensitivity and scale for neuron multiomics
    • RNA-seq tips
    • RNA-seq FAQs
  • Technical notes
    • DNA-seq
      • NGS library prep with enzymatic fragmentation
      • Comparing ThruPLEX FLEX EF to Kapa and NEBNext
      • Next-gen WGA method for CNV and SNV detection from single cells
      • Low-input whole-exome sequencing
      • DNA-seq from FFPE samples
      • Low cell number ChIP-seq using ThruPLEX DNA-Seq
      • Detection of low-frequency variants using ThruPLEX Tag-Seq FLEX
      • ThruPLEX FLEX outperforms NEBNext Ultra II
      • Streamlined DNA-seq from challenging samples
      • High-resolution CNV detection using PicoPLEX Gold DNA-Seq
      • ThruPLEX FLEX data sheet
      • Low-volume DNA shearing for ThruPLEX library prep
    • Immune Profiling
      • Track B-cell changes in your mouse model
      • Efficient and sensitive profiling of human B-cell receptor repertoire
      • TCRv2 kit validated for rhesus macaque samples
      • Improved TCR repertoire profiling from mouse samples (bulk)
      • TCR repertoire profiling from mouse samples (bulk)
      • BCR repertoire profiling from mouse samples (bulk)
      • Improved TCR repertoire profiling from human samples (bulk)
      • TCR repertoire profiling from human samples (single cells)
      • BCR repertoire profiling from human samples (bulk)
    • Epigenetic sequencing
      • ChIP-seq libraries for transcription factor analysis
      • ChIP-seq libraries from ssDNA
      • Full-length small RNA libraries
      • Methylated DNA-seq with MBD2
    • Reproductive health technologies
      • Embgenix ESM Screen
      • Embgenix PGT-A
  • Technology and application overviews
    • Embgenix GT-omics Oncology Tech Note
    • Sequencing depth for ThruPLEX Tag-seq
    • Whole genome amplification from single cells
  • FAQs and tips
    • Positive and negative controls in scRNA-seq
    • DNA-seq FAQs
    • ChIP-seq FAQs
    • Indexing FAQs
    • TCR-seq methods: Q&A
  • DNA-seq protocols
    • Using UMIs with ThruPLEX Tag-Seq FLEX
    • Targeted capture with Agilent SureSelectQXT
    • Exome capture with Illumina Nextera Rapid Capture
    • Targeted capture with Roche NimbleGen SeqCap EZ
    • Targeted capture with IDT xGen panels
    • Targeted capture with Agilent SureSelectXT
    • Targeted capture with Agilent SureSelectXT2
  • Bioinformatics resources
    • Cogent NGS Analysis Pipeline
      • Cogent NGS Analysis Pipeline notices
    • Cogent NGS Discovery Software
      • Cogent NGS Discovery Software notices
    • Cogent NGS Immune Profiler
      • Cogent NGS Immune Profiler Software notices
    • Cogent NGS Immune Viewer
    • Embgenix Analysis Software
    • SMART-Seq DE3 Demultiplexer
  • Webinars
    • Harnessing the power of full-length transcriptome analysis for biomarker discoveries
    • SMART-Seq Pro kits for biomarker detection
    • Takara Bio Single-Cell Workshop, Spring 2021
    • Single-Cell Workshop at 2020 NextGen Omics Series UK
    • Immunogenomics to accelerate immunotherapy
    • MeD-Seq, a novel method to detect DNA methylation
    • Single-cell DNA-seq
  • Posters
    • Long-read mRNA-seq poster
New products
Need help?
Contact Sales
SMARTer NGS for TCR SMARTer Human TCR a/b Profiling Kit v2

TCR-seq methods: Q&A

Examining the patient's immune response is crucial to improve our understanding of immune-related diseases and to develop new immunotherapies. T-cell receptor (TCR) diversity analysis using NGS has proven instrumental in probing for these questions, but no systematic study comparing TCR-seq methods was available until recently.

In a previous webinar, "TCR-seq methods: when to use which," Dr. Encarnita Mariotti-Ferrandiz discussed which traits make for the best TCR-seq method in your experiments.

Continue reading for insights from the Q&A session.

Can any lessons from this TCR study be applied to BCR?

A study previously compared BCR-seq methods, but it only included a few methods. Of course, we can apply some findings from the TCR to the BCR. However, the BCR also has other complex information, specifically somatic hypermutations. This would require its own proper study and appropriate comparisons of BCR data.

Why have there been no multiplex PCR methods evaluating the T-cell receptor α (TRA)?

TRA poses more challenges due to the increased number of genes involved, as compared to T-cell receptor β. However, there are protocols that exist for it.

Which kit was used for the RACE-3 method?

In “Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases,” we use standardized names to facilitate discussion. All of the method identifiers can be found in the supplementary information. RACE-3 is Takara Bio’s SMART-Seq® TCR a/b Profiling Kit v1.

Does the data suggest that multiplex PCR is more biased than 5’-RACE and that the input nucleic acid type affects the methods?

I will not say that in general, mPCR is more biased than RACE, because some mPCR methods performed quite well. Some RACE methods are quite efficient, others less. The same can be said for mPCR techniques.

Certainly, there is an impact from the input nucleic acid material. RNA in different populations can be highly variant, and specific bioinformatics solutions might be required to enable comparisons.

Is there a control mouse cell line with a known repertoire, similar to Jurkat for humans?

To our knowledge, there is only one commercially available T-cell line, CTLL-2. Eventually, primary cells from TCR transgenic mice with a RAGKO background, such as OT-I or OT-II, can be used.

What is the minimum amount of input DNA and RNA for these methods to get reliable results?

The minimum amount required depends on the initial number of cells and the contents within each cell. Other downstream adaptations are required to prevent over-sequencing.

In our study, the lowest amount of RNA tested is 10 ng (Supplementary Figure 8). We compared the impact of a smaller quantity of RNA with a larger quantity, 100 ng. The conclusions are as follows:

  • For all methods, richness was higher in large (100 ng) than small (10 ng) samples (Supplementary Figure 8A).
  • Renyi diversity profiles (Supplementary Figure 8B) showed when α<2 (that is, when the diversity metric is influenced by rare clones), the diversity of small samples is less than that of larger ones. In contrast, at α≥2 (Simpson index), diversity profiles of both samples overlap. Thus, a low RNA input influences the number of rare TCR sequences detected but not the distribution of the more abundant TCRs.
  • Finally, the inter-sample similarity (Supplementary Figure 8C) shows that for TRA, the similarity between 10-ng replicates was lower at the level of VJ usage and of all clonotypes, compared with that between 100-ng replicates. For TRB, the results were similar regardless of the quantity (MH>0.5). When focusing on the 1% MPC, the similarity was comparable regardless of the quantity for both TRA and TRB. These results indicated that RNA quantity, indeed, affects rare clonotype detection.

Which MiSeq® chemistry (150/250/300) gives better coverage to detect the most T-cell clones?

This depends on the protocols and the size of the generated amplicons. In order to detect the maximum number of T-cell clones, you must adjust the sequencing depth more than the number of cycles.

The sensitivity of the method is also very important. Based on the table, the most sensitive methods are RACE-3 and RACE-5 for the TRA chain, and mPCR-1, mPCR-3, and RACE-3 for the TRB chain.

For RACE-PCR, I suggest going for at least 250, but you could make adaptations with 150 as some of the co-authors of our study used to do.

Have you tried mPCR-1 (Adaptive Biotechnologies) using RNA instead of gDNA?

Yes, in a previous, smaller comparison, but the results were not satisfactory.

From your experience, how critical is sorting B cells to avoid plasma cell-driven bias in BCR expression for RNA-based methods?

I have no experience in BCR or B cells, but you may want to contact people such as Dr. Nina Luning Prak or Dr. Chaim Schramm.

Was it tested if the TCR mRNA expression in Jurkat was comparable to human Teff?

No, we did not test for differential expression. Nevertheless, we can hypothesize that as Jurkat cells are leukemic clones, they may have an activation state and thus a higher TCR RNA expression than naive T cells, which constitute the majority of the T cells in our study.

Can the complexity of methods affect library production? If so, were any measures taken such as practice runs to learn the protocol, or batch runs to gain experience after doing all nine libraries?

With respect to the protocols performed by academic laboratories and service providers, the protocols have indeed been "standardized." For those carried out by our laboratory (RACE-3, RACE-6, and mPCR-3), we have done some experiments beforehand. The production of all libraries from these three methods was executed by the same person. The validation steps requested by the suppliers were performed. It is therefore possible that technical biases are linked to the efficiency of library production, but this is a bias to be considered in the choice of the method.

Would you suggest including a spike-in from a monoclonal repertoire (e.g., transgenic TCR or BCR mice) to evaluate the noise generated by the sequencing method? Could that help distinguish rare clones from those resulting from noise?

This is a very important question. I do not have the answer because using a unique clone may not help evaluating all potential issues during a library prep or run, or even to handle the complexity. There are several publications addressing this, but there are no gold standards yet. It depends on the nature of your repertoires and the research questions. This is a topic we are addressing in the AIRR Community—trying to identify what controls and standards are appropriate. If you are interested, please get in touch with the working group.


Additional TCR-seq resources

TCR-seq methods: strengths, weaknesses, and rankings

A new study by Dr. Encarnita Mariotti-Ferrandiz and her team compares commercial and academic NGS techniques for TCR repertoires.

Tech note: Profiling human T-cell receptors with improved SMART technology

SMARTer TCR profiling with optimized chemistry, UMIs, UDIs, and bioinformatics support for more accurate, reliable clonotype calling and quantification.

4 factors to consider for immune repertoire profiling

Getting ready to sequence T-cell and B-cell receptors? Check out these tips to help you make key decisions before you start.

Takara Bio USA, Inc.
United States/Canada: +1.800.662.2566 • Asia Pacific: +1.650.919.7300 • Europe: +33.(0)1.3904.6880 • Japan: +81.(0)77.565.6999
FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES. © 2025 Takara Bio Inc. All Rights Reserved. All trademarks are the property of Takara Bio Inc. or its affiliate(s) in the U.S. and/or other countries or their respective owners. Certain trademarks may not be registered in all jurisdictions. Additional product, intellectual property, and restricted use information is available at takarabio.com.

Takara Bio

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Support
  • Contact us
  • Technical support
  • Customer service
  • Shipping & delivery
  • Sales
  • Feedback
Products
  • New products
  • Special offers
  • Instrument & reagent services
Learning centers
  • NGS
  • Gene function
  • Stem cell research
  • Protein research
  • PCR
  • Cloning
  • Nucleic acid purification
About
  • Our brands
  • Careers
  • Events
  • Blog
  • Need help?
  • Announcements
  • Quality and compliance
  • That's Good Science!
Facebook Twitter  LinkedIn

logo strip white

©2025 Takara Bio Inc. All Rights Reserved.

Region - North America Privacy Policy Terms and Conditions Terms of Use

Top



  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISAs
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • New products
  • Special offers
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing services
  • Services
  • Facilities
  • Our process
  • Resources
  • Customer service
  • Sales
  • Make an appointment with your sales rep
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • GoStix Plus FAQs
  • Partnering & Licensing
  • Vector information
  • Vector document overview
  • Vector document finder
Takara Bio's award-winning GMP-compliant manufacturing facility in Kusatsu, Shiga, Japan.

Partner with Takara Bio!

Takara Bio is proud to offer GMP-grade manufacturing capabilities at our award-winning facility in Kusatsu, Shiga, Japan.

  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Spatial biology
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • Antibodies and ELISA
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
Create a web account with us

Log in to enjoy additional benefits

Want to save this information?

An account with takarabio.com entitles you to extra features such as:

•  Creating and saving shopping carts
•  Keeping a list of your products of interest
•  Saving all of your favorite pages on the site*
•  Accessing restricted content

*Save favorites by clicking the star () in the top right corner of each page while you're logged in.

Create an account to get started

  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Our brands
  • Our history
  • In the news
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • Trademarks
  • License statements
  • Quality statement
  • HQ-grade reagents
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
  • Website FAQs

That's GOOD Science!

What does it take to generate good science? Careful planning, dedicated researchers, and the right tools. At Takara Bio, we thoughtfully develop exceptional products to tackle your most challenging research problems, and have an expert team of technical support professionals to help you along the way, all at superior value.

Explore what makes good science possible

…
 Customer Login
 View Cart (0)
Takara Bio
  • Home
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
  •  Customer Login
  • Register
  •  View Cart (0)

Takara Bio USA, Inc. provides kits, reagents, instruments, and services that help researchers explore questions about gene discovery, regulation, and function. As a member of the Takara Bio Group, Takara Bio USA is part of a company that holds a leadership position in the global market and is committed to improving the human condition through biotechnology. Our mission is to develop high-quality innovative tools and services to accelerate discovery.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES (EXCEPT AS SPECIFICALLY NOTED).

Clontech, TaKaRa, cellartis

  • Products
  • COVID-19 research
  • Next-generation sequencing
  • Real-time PCR
  • Stem cell research
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Nucleic acid purification
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • New products
  • Special offers
  • COVID-19 research
  • Viral detection with qPCR
  • SARS-CoV-2 pseudovirus
  • Human ACE2 stable cell line
  • Viral RNA isolation
  • Viral and host sequencing
  • Vaccine development
  • CRISPR screening
  • Drug discovery
  • Immune profiling
  • Publications
  • Next-generation sequencing
  • Spatial omics
  • RNA-seq
  • DNA-seq
  • Single-cell NGS automation
  • Reproductive health
  • Bioinformatics tools
  • Immune profiling
  • Real-time PCR
  • Great value master mixes
  • Signature enzymes
  • High-throughput real-time PCR solutions
  • Detection assays
  • References, standards, and buffers
  • Stem cell research
  • Media, differentiation kits, and matrices
  • Stem cells and stem cell-derived cells
  • mRNA and cDNA synthesis
  • In vitro transcription
  • cDNA synthesis kits
  • Reverse transcriptases
  • RACE kits
  • Purified cDNA & genomic DNA
  • Purified total RNA and mRNA
  • PCR
  • Most popular polymerases
  • High-yield PCR
  • High-fidelity PCR
  • GC rich PCR
  • PCR master mixes
  • Cloning
  • In-Fusion seamless cloning
  • Competent cells
  • Ligation kits
  • Restriction enzymes
  • Nucleic acid purification
  • Automated platforms
  • Plasmid purification kits
  • Genomic DNA purification kits
  • DNA cleanup kits
  • RNA purification kits
  • Gene function
  • Gene editing
  • Viral transduction
  • Fluorescent proteins
  • T-cell transduction and culture
  • Tet-inducible expression systems
  • Transfection reagents
  • Cell biology assays
  • Protein research
  • Purification products
  • Two-hybrid and one-hybrid systems
  • Mass spectrometry reagents
  • Antibodies and ELISA
  • Primary antibodies and ELISAs by research area
  • Fluorescent protein antibodies
  • Services & Support
  • OEM
  • Instrument services
  • Gene and cell therapy manufacturing
  • Customer service
  • Sales
  • Shipping & delivery
  • Technical support
  • Feedback
  • Online tools
  • Partnering & Licensing
  • Vector information
  • OEM
  • Portfolio
  • Process
  • Facilities
  • Request samples
  • FAQs
  • Instrument services
  • Apollo services
  • ICELL8 services
  • SmartChip ND system services
  • Gene and cell therapy manufacturing
  • Services
  • Facilities
  • Our process
  • Resources
  • Sales
  • Make an appointment with your sales rep
  • Online tools
  • GoStix Plus FAQs
  • Vector information
  • Vector document overview
  • Vector document finder
  • Learning centers
  • Automation systems
  • Next-generation sequencing
  • Spatial biology
  • Real-time PCR
  • Nucleic acid purification
  • mRNA and cDNA synthesis
  • PCR
  • Cloning
  • Stem cell research
  • Gene function
  • Protein research
  • Antibodies and ELISA
  • Automation systems
  • Shasta Single Cell System introduction
  • SmartChip Real-Time PCR System introduction
  • ICELL8 introduction
  • Next-generation sequencing
  • RNA-seq
  • Technical notes
  • Technology and application overviews
  • FAQs and tips
  • DNA-seq protocols
  • Bioinformatics resources
  • Webinars
  • Real-time PCR
  • Download qPCR resources
  • Overview
  • Reaction size guidelines
  • Guest webinar: extraction-free SARS-CoV-2 detection
  • Technical notes
  • Nucleic acid purification
  • Nucleic acid extraction webinars
  • Product demonstration videos
  • Product finder
  • Plasmid kit selection guide
  • RNA purification kit finder
  • mRNA and cDNA synthesis
  • mRNA synthesis
  • cDNA synthesis
  • PCR
  • Citations
  • PCR selection guide
  • Technical notes
  • FAQ
  • Cloning
  • Automated In-Fusion Cloning
  • In-Fusion Cloning general information
  • Primer design and other tools
  • In‑Fusion Cloning tips and FAQs
  • Applications and technical notes
  • Stem cell research
  • Overview
  • Protocols
  • Technical notes
  • Gene function
  • Gene editing
  • Viral transduction
  • T-cell transduction and culture
  • Inducible systems
  • Cell biology assays
  • Protein research
  • Capturem technology
  • Antibody immunoprecipitation
  • His-tag purification
  • Other tag purification
  • Expression systems
  • APPLICATIONS
  • Molecular diagnostics
  • mRNA and protein therapeutics
  • Pathogen detection
  • Immunotherapy research
  • Cancer research
  • Alzheimer's disease research
  • Reproductive health technologies
  • Infectious diseases
  • Molecular diagnostics
  • Interview: adapting to change with Takara Bio
  • Applications
  • Solutions
  • Partnering
  • Contact us
  • mRNA and protein therapeutics
  • Characterizing the viral genome and host response
  • Identifying and cloning protein targets
  • Expressing and purifying protein targets
  • Immunizing mice and optimizing vaccines
  • Pathogen detection
  • Sample prep
  • Detection methods
  • Identification and characterization
  • SARS-CoV-2
  • Antibiotic-resistant bacteria
  • Food crop pathogens
  • Waterborne disease outbreaks
  • Viral-induced cancer
  • Immunotherapy research
  • T-cell therapy
  • Antibody therapeutics
  • T-cell receptor profiling
  • TBI initiatives in cancer therapy
  • Cancer research
  • Kickstart your cancer research with long-read sequencing
  • Sample prep from FFPE tissue
  • Sample prep from plasma
  • Cancer biomarker quantification
  • Single cancer cell analysis
  • Cancer transcriptome analysis
  • Cancer genomics and epigenomics
  • HLA typing in cancer
  • Gene editing for cancer therapy/drug discovery
  • Alzheimer's disease research
  • Antibody engineering
  • Sample prep from FFPE tissue
  • Single-cell sequencing
  • Reproductive health technologies
  • Embgenix FAQs
  • Preimplantation genetic testing
  • ESM partnership program
  • ESM Collection Kit forms
  • Infectious diseases
  • Develop vaccines for HIV
  • About
  • BioView blog
  • That's Good Science!
  • Our brands
  • Our history
  • In the news
  • Events
  • Careers
  • Trademarks
  • License statements
  • Quality and compliance
  • HQ-grade reagents
  • International Contacts by Region
  • Need help?
  • Website FAQs
  • BioView blog
  • Automation
  • Cancer research
  • Career spotlights
  • Current events
  • Customer stories
  • Gene editing
  • Research news
  • Single-cell analysis
  • Stem cell research
  • Tips and troubleshooting
  • Women in STEM
  • That's Good Support!
  • About our blog
  • That's Good Science!
  • SMART-Seq Pro Biomarker Discovery Contest
  • DNA extraction educational activity
  • That's Good Science Podcast
  • Season one
  • Season two
  • Season three
  • Events
  • Biomarker discovery events
  • Calendar
  • Conferences
  • Speak with us
  • Careers
  • Company benefits
  • International Contacts by Region
  • United States and Canada
  • China
  • Japan
  • Korea
  • Europe
  • India
  • Affiliates & distributors
  • Need help?
  • Privacy request
Takara Bio
  • Products
  • Services & Support
  • Learning centers
  • APPLICATIONS
  • About
  • Contact Us
…